
GestureCalc: An Eyes-Free Calculator for Touch Screens

Bindita Chaudhuri1*, Leah Perlmutter1*, Justin Petelka2, Philip Garrison1

James Fogarty1, Jacob O. Wobbrock2, Richard E. Ladner1

1Paul G. Allen School of Computer Science & Engineering, 2The Information School
DUB Group | University of Washington, Seattle, WA 98195, USA

1{bindita, lrperlmu, philipmg, jfogarty, ladner}@cs.washington.edu, 2{jpetelka, wobbrock}@uw.edu

ABSTRACT
A digital calculator is one of the most frequently used touch
screen applications. However, keypad-based character input
in existing calculator applications requires precise, targeted
key presses that are time-consuming and error-prone for many
screen readers users. We introduce GestureCalc, a digital
calculator that uses target-free gestures for arithmetic tasks.
It allows eyes-free target-less input of digits and operations
through taps and directional swipes with one to three fngers,
guided by minimal audio feedback. We conducted a mixed
methods longitudinal study with eight screen reader users and
found that they entered characters with GestureCalc 40.5%
faster on average than with a typical touch screen calculator.
Participants made more mistakes but also corrected more
errors with GestureCalc, resulting in 52.2% fewer erroneous
calculations than the baseline. Over the three sessions in the
study, participants were able to learn the GestureCalc gestures
and effciently perform short calculations. From our interviews
after the second session, participants recognized the effort in
learning a new gesture set, yet reported confdence in their
ability to become fuent in practice.

CCS Concepts
•Human-centered computing → Accessibility
technologies; •Hardware → Touch screens; •Social
and professional topics → People with disabilities;

Author Keywords
Eyes-free entry; gesture input; digital calculator; touch screen;
mobile devices.

INTRODUCTION
The digital calculator is a common application that many
people use on touch screen devices. This application is
generally easy for sighted people to use; they visually locate
targets in the form of soft buttons and tap them to get a

*The frst two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifc permission and/or a
fee. Request permissions from permissions@acm.org.
ASSETS ’19, October 28–30, 2019, Pittsburgh, PA, USA.
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6676-2/19/10 ...$15.00.
http://dx.doi.org/10.1145/3308561.3353783

(a) GestureCalc (b) Baseline

Figure 1. (a) Performing a three-fnger tap on GestureCalc our novel
eyes-free app with target-free rich gestures, versus (b) typing “5” on
ClassicCalc (a typical touch screen calculator), the baseline.

desired result. Buttons correspond to digits (i.e., 0-9), the
decimal point and operations (e.g., subtraction, multiplication,
backspace, equals). For people who use screen readers
(e.g., VoiceOver for iOS, TalkBack for Android), fnding and
activating buttons in a spatial layout can be time consuming.
The purpose of this paper is to explore a design for a calculator
that uses eyes-free target-less gestures, eliminating the need to
explore for a button when using a screen reader. We call this
GestureCalc, an eyes-free gesture-based calculator for touch
screens. Eyes-free interaction has been explored in a variety of
research projects (e.g., [5, 30, 34, 18, 4, 12]). The authors in
[24] have also uncovered differences in the types of gestures
sighted versus blind people fnd intuitive. Eyes-free solutions
for accessible numeric input include Tapulator (gesture-based
numeric input) [36], DigiTaps (minimal audio feedback for
numeric input) [3], and BrailleTap (Braille-based gesture
calculator) [1]. Our goal is to combine the advantages and
address the disadvantages of existing solutions to create a
single gesture-based calculator application usable for screen
reader users, typically visually impaired users.

To create GestureCalc we modifed DigiTaps1.8 [3] for digits
and defned new metaphor-based gestures for basic calculator
operations. The overall goal is to improve the accessibility of
state-of-the-art digital calculator applications by: 1) designing
gesture codes based on conceptual metaphors and 2) requiring
one or two simple gestures for each digit or operation. We

http://dx.doi.org/10.1145/3308561.3353783
mailto:permissions@acm.org
mailto:wobbrock}@uw.edu
mailto:ladner}@cs.washington.edu

evaluated our prototype in a longitudinal study with eight
participants over three sessions. During each session we
evaluated: 1) the rate of error corrections in the input, 2) the
speed of entering the gestures, and 3) the memorability and
intuitiveness of the gestures.

Our primary contributions are:

• We designed a novel eyes-free target-less digital calculator
application that uses a minimal number of accessible
gestures to enter digits and operations. Our code is available
online1 and we also plan to release the app.

• We proposed intuitive gestures based on conceptual
metaphors that are both memorable and easily learnable
for visually impaired people as suggested by our study.

• We conducted a mixed methods study where participants
performed mathematical calculations, in order to evaluate
the effectiveness of GestureCalc for screen reader users.
We found that participants entered calculations 40.5% faster
and performed 52.2% fewer erroneous calculations than
with the baseline.

RELATED WORK

Gestures and Metaphors
Modern understanding of metaphors goes beyond substitution
and comparison in language [42, 16]. In cognitive linguistics,
Lakoff and Johnson’s theory of conceptual metaphors [25]
states that we understand new knowledge by “mapping from
known domains to unknown domains" through recurring
structures within our cognitive processes (e.g., image schemas)
or deeper conceptualizations based in our physical, bodily
experience. Though these conceptualizations are infuenced
by our socio-cultural environment and unique physical
experiences, many schemas are grounded in experiences
that transcend culture, such as forward motion, occlusion,
containment, sensation, and perception. [8, 28].

Metaphors are commonly used in the HCI community.
Hurtienne and Blessing [22] found schema-aligned interface
elements to be more intuitive to users than interface elements
that reversed the established schema. Loeffer et al. isolated
schemas in user interview transcripts and mapped these to
their designed interface [27]. Hiniker et al. found users were
more effcient in working with metaphorical visualizations
that aligned with documented image schemas [20]. Finally,
Kane et al. found symbol-based gesture languages to be less
intuitive than metaphor-based languages for blind people [24].
Given the potential of metaphors to improve usability for
blind people, we designed GestureCalc to use metaphoric
input instead of symbolic input. Gestures with directional
swipes are grouped according to whether they increase
(e.g., multiplication, addition) or decrease (e.g., division,
subtraction) a value and are oriented according to the metaphor
“More is up” (e.g., addition is an upward swipe).

Eyes-free Entry
Several researchers have developed eyes-free text entry
systems for touch screen devices (e.g., [5, 30, 34, 4, 12, 41]).
Touch screen operating systems generally have default screen
1https://github.com/bindita/GestureCalculator

readers, such as Apple’s VoiceOver for iOS [2] or Android’s
TalkBack [15], which use interaction techniques introduced in
SlideRule [23]. Screen reader based text entry guides people
through audio feedback to search for targets with one or more
fngers on the screen and then perform a second gesture such
as a split-tap to select that character to input, a process that can
be cumbersome. Bonner et al. developed No-Look-Notes [9],
a soft keyboard dividing character input into a frst split-tap to
select from 8 segments of a pie menu and a second split-tap
to select a single character from that segment. This makes
character selection easier and faster than with a QWERTY soft
keyboard with screen reader, where buttons are very small.
However, this still requires searching and targeting, which
results in slow character input rates. Speech input is a possible
alternative for eyes-free entry, but it has several limitations:
1) it cannot be used in quiet environments, 2) the input is prone
to error, especially in noisy environments, and 3) it is not a
feasible solution for speech-impaired users.

Eyes-free entry techniques using Braille have also been
used to improve touch screen accessibility for blind people
(e.g., [34, 30, 6]). Alnfai et al. proposed BrailleTap [1], a
calculator application that uses taps in the form of Braille
patterns for numeric input together with other gestures for
calculator operations. However, Braille-based inputs have
several drawbacks. First, these techniques require multiple
gestures per character input (i.e., up to six), which leads
to a low input speed. Second, Braille-based inputs require
knowledge of Braille dot patterns. Although Braille was
developed for people with visual impairments, a report from
the National Federation of the Blind states that only 10% of
legally blind people can read Braille [33]. This makes Braille
legible to only a small percentage of blind people, but we
wanted our app to be accessible to a wider population.

Eyes-free input methods have also been explored for entering
digits (e.g., Tap2Count [18], Digitaps [3]) and operations
(e.g., Tapulator [36]). Tap2Count allows users to touch an
interactive screen with one to ten fngers to enter digits. This
requires considerable physical effort and cannot be easily
scaled to small touch screen devices like mobile phones.
DigiTaps uses an eyes-free gesture language based on a
prefx-free coding scheme for numeric input with haptic or
audio feedback on touch screen devices. However, both
Tap2Count and DigiTaps do not include operations, which
increase the challenges of designing usable gestures and
implementing a working system. Tapulator extends Digitaps
by adding gestures for operations, but the gestures are
symbolic, based on the printed structures of the operators,
rather than metaphorical, which should hinder learnability and
memorability for visually impaired users [24].

Existing Products
The idea of using gestures for calculations dates back to
early implementation of a touch screen calculator on a digital
watch (Casio AT-550) [11]. More recently, MyScript created
a calculator [32] that takes handwritten characters on a touch
screen as input for mathematical calculations, but it is not
usable by blind users. A handful of gesture-based calculators
are also available online (e.g., Sumzy for iPhone [7], Swipe

https://github.com/bindita/GestureCalculator

Figure 2. Symbolic representations of a superset of our gestures,
with a visual shortcut for each gesture. Gestures currently used in
GestureCalc are marked in black, while gestures currently unused are
marked in grey.

Calculator for Android [31] and Rechner Calculator [35]). All
of these calculators have a 3×3 keypad for the digits, and only
the operations are performed using tap and swipe gestures on
or above the keypad area on the screen. To the best of our
knowledge, our calculator is the frst application which is free
of any buttons or targeted gestures.

DESIGN
We build upon the digit set introduced in DigiTaps [3], adding
gestures for basic arithmetic operations. Our application
also improves character entry speed compared to a classic
calculator application by: 1) allowing users to interact with
any part of the screen (i.e., target-less interaction), 2) requiring
a maximum of two gestures for every input, 3) avoiding
symbolic gestures based on printed characters [24], 4) avoiding
complex gestures by using only swipes and taps with up
to three fngers, and 5) favoring intuitive gestures based on
conceptual metaphors such as “up” for increasing and “down”
for decreasing [25].

Gestures
Common gestures for interacting with touch screen devices
include tap, swipe, pinch, shake, and rotate. In our design,
we only use taps and swipes because they have been found
to be easiest to perform and accessible to blind users [24].
Our swipe gestures are directional: up, down, left, and right.
We also use a variation of the tap gesture called long tap, in
which users press and hold a fnger against the touch screen
for a short duration. We provide haptic feedback to the user
from our app to indicate when the tap is held long enough
(0.5 seconds) to be recognized as a long tap gesture. All
gestures can be performed anywhere on the screen with one,
two, or three fngers simultaneously. We restrict each gesture
to involve a maximum of three fngers because interaction with
the ‘pinky’ fnger is diffcult [36]. Figure 2 shows the symbolic
representations of the different possible gesture inputs in our
design.

Character Codes
We defne the term ‘characters’ as the digits 0 to 9 and
operations that GestureCalc accepts as input. Each character is
encoded by a combination of one or two gestures for fast entry.
Our character codes are prefx-free (i.e., no character’s code is

Figure 3. Codes for entering digits.

a prefx of another code), which allows unambiguous parsing
of input. In addition, our gestures are based on conceptual
metaphors that help in remembering the character codes.

Digits
We designed 10 different codes to represent the digits 0 to 9,
similar to DigiTaps1.8. Digit 0 is represented by a one-fnger
downward swipe, digit 1 by a one-fnger tap, and digit 2 by
a two-fnger tap. The digits 3, 4, 5, and 6 (i.e., the 3 block)
can be represented as (3 + 0), (3 + 1), (3 + 2) and (3 + 3)
respectively, hence they are encoded by a three-fnger tap
followed by a one-fnger downward swipe, a one-fnger tap,
two-fnger tap and three-fnger tap respectively. The delimiter
of 0 at the end of digit 3 ensures prefx-free property.

In Digitaps1.8 [3], digits 7, 8 and 9 are expressed as (10 - 3),
(10 - 2), and (10 - 1) respectively. This is inconsistent with
our additive scheme for code design. We therefore updated
the codes for 7, 8, and 9 to be more semantically similar to
4, 5, and 6, using addition rather than subtraction. We denote
digits 6, 7, 8, and 9 (i.e., the 6 block) as (6 + 0), (6 + 1),
(6 + 2), and (6 + 3) respectively and represent the prefx 6 for
these digits using a one-fnger upward swipe. Hence, 6, 7, 8,
and 9 are represented by a one-fnger upward swipe followed
by a one-fnger downward swipe, one-fnger tap, two-fnger
tap, or three-fnger tap respectively. Note that the digit 6
has two different representations. Figure 3 shows the visual
representation of the codes for entering digits using visual
shortcuts introduced in Figure 2.

Our coding scheme uses an average of 1.7 gestures per
digit, which is fewer than 1.8 gestures for Digitaps1.8 and
2.5 gestures for BrailleTaps. The trade-off as compared to
Digitaps1.8 is that we use directional swipes. GestureCalc
digit codes are therefore slightly more complex, but our pilot
study offered evidence that they are still easily learnable. This
suggests that the increased beneft for fast character entry may
offset the cost of additional complexity.

Operations
We oriented directional swipes used in GestureCalc operations
according to a conceptual metaphor that “more is higher” [25].
For instance, addition increases the value of a number, so
we represent ‘+’ operation with a two-fnger upward swipe.
Subtraction, on the contrary, decreases a number’s value and
hence ‘-’ operation is represented by a two-fnger downward
swipe. Our gesture for ‘-’ operation can be used as either an
operator between two operands or to negate a single operand.
Multiplication implicitly means multiple additions, hence
‘*’ operation is represented by a three-fnger upward swipe.
Similarly, division is multiple subtractions (and the inverse
of multiplication), hence ‘/’ operation is represented by a
three-fnger downward swipe. Finally, the ‘.’ (decimal point)
operation is represented by a long tap.

Figure 4. Codes for entering operations.

The ‘=’ (equals) operation metaphorically moves the
expression forward by generating a result. Hence, it is
represented by a two-fnger horizontal swipe from left to
right (i.e., two-fnger right swipe). Incidentally, this also
resembles the shape of the equals symbol. When the user
enters the equals operation, the application displays and
speaks the computation’s result and clears the input for the
next computation. The ‘D’ (delete) operation deletes one
character at a time and speaks the character being deleted. In
left-to-right writing systems such as Braille [44] or written
English, backspace conventionally deletes a character to the
left of the cursor. We therefore represent this with a one-fnger
left swipe. The ‘C’ (clear) operation deletes all characters in
the input, which is equivalent to multiple deletions, so it is
represented by a two-fnger left swipe. Figure 4 shows the
visual representation of the codes for entering operations.

Formative Pilot Study
We conducted a pilot study to evaluate the memorability and
intuitiveness of our gesture codes and to improve the usability
and functionality of our prototype application. We recruited
four participants (one of whom was blind) and conducted two
30-minute sessions (separated by 2 or 3 days), each having
two tasks. The frst session started with a brief training and
practice period, the second session directly started with the
practice period. During task 1, participants were asked to
verbally describe the gesture code for each character in a
random order. The error rate (percentage of wrong answers) in
recalling codes decreased to 0 in session 2 for all participants,
suggesting that our gesture language is easily memorable.
During task 2, the participants were asked to enter a series
of 15 random expressions of varying length. All participants
achieved a 3% or less error rate in every session, suggesting
that the gesture set and the app have a good level of usability.
The rate of character entry increased by 24% from session 1
to session 2, indicating speed improves with practice.

We observed it was diffcult for participants to remember and
enter the entire prompted expression. They often asked for
repetitions, which affected character entry speed. To avoid this,
we reduced the overall length of expressions for the main study
and read the expressions in parts. During post-pilot interviews,
participants mentioned that GestureCalc’s grouping of digits
and operators to share common types of gestures helped.
Participants had diffculty remembering the digit 6 was two
consecutive three-fnger taps, whereas 6 in denoting digits 7,
8, 9 is a one-fnger upward swipe. We mitigated this confusion
by overloading the code for 6 to include both 3 + 3 and 6+ 0
(i.e., as described in Character Codes). Finally, our blind
participant suggested reading deleted characters aloud.

Additional Features
GestureCalc provides audio feedback (i.e., speaks the entered
character) after every digit or operator, similar to Digitaps.
Digitaps also used different types of haptic feedback for
different gestures as an alternative to audio feedback and found
that haptic feedback results in faster input. However, haptic
feedback was found to have a higher error rate than audio
feedback. Error recovery in long calculations is more costly
than in simple number entry, because it requires users to restart
the expression from the beginning. Additionally, providing
multiple types of haptic feedback for our diverse gesture set
may confuse users. Our implementation currently supports
mathematical calculations involving just two operands. A
readback feature enables users to shake the device to trigger
audio feedback, reading aloud the expression that has been
entered. This feature is designed to be helpful for feedback
while entering expressions involving long operands.

EVALUATION METHOD
We conducted an IRB-approved study to evaluate the design
and implementation of our application. We describe the study
methods and outcomes in the following subsections.

Participants
We recruited 8 participants for this study, 6 male and 2
female, ranging in age from 23 to 58. Our inclusion
criterion was answering “yes” to the question “When you
use a touch screen, do you typically use a screen reader?”
One participant used an Android device as their primary
touch screen device, all others used Apple devices. All
participants except one reported using a touch screen every
day. Most participants said they use a calculator at least
once a week at home / offce / classroom / public places for
different activities such as calculating tips, unit conversions,
and personal budgeting. Their most common calculations
(e.g. addition, multiplication, taking average, calculating
percentages) do not require a scientifc calculator. Table 1
describes individual participant mobile device and calculator
use in detail. We compensated participants with US $80 over
three sessions and reimbursement for travel expenses.

Apparatus and Conditions
GestureCalc is developed for iOS using the Xcode platform
on Mac and the Swift programming language. For the study,
we installed it on an iPhone 7 with touch screen dimensions
of 5.44× 2.64 inches. We allowed both portrait and landscape
modes for using the application.

Most applications in prior research require some
target-dependent input, hence we compared GestureCalc to
the default iOS calculator, which we call ClassicCalc. To
accurately measure performance and add detailed logging,
we recreated the default iOS calculator with the same button
locations, sizes, and audio labels. However, we removed the
‘%’ button and added the functionality of the ‘+/-’ button
to the ‘-’ button, to be consistent with our GestureCalc
implementation. In ClassicCalc, participants type digits
by using the standard eyes-free typing mode of iOS, which
involves seeking with VoiceOver audio guidance, then
performing a double-tap or split-tap to activate the selected

PID Age Gender Primary touch
screen device

Primary mobile
input method

Primary mobile
output method

Mobile
device use
frequency

Primary
calculator

Calculator
frequency

P1 27 M iPhone braille keyboard braille display daily Voice assistants a few times a
week

P2 39 M Key One
Blackberry

phone’s tactile
keyboard TalkBack daily Windows 10

calculator
at least a couple
times a month

P3 42 F iPhone braille screen
input VoiceOver daily Windows

calculator every day at work

P4 46 M iPad
virtual keyboard
w/ magnifcation,
color inversion

magnifcation,
color inversion,

VoiceOver
daily iOS calculator

with hand lens
once or twice a

week

P5 23 F iPhone braille screen
input VoiceOver daily iOS calculator several times a

week

P6 58 M iPhone touch typing VoiceOver daily
Siri, Windows
calculator, iOS

calculator
daily

P7 27 M iPhone braille screen
input VoiceOver daily Python console weekly or every

few weeks

P8 46 M iPhone touch typing VoiceOver weekly Windows
calculator

several times a
week

Table 1. Participant demographics and summary of mobile device and calculator use. PID denotes participant ID.

key. The only target-free calculator we are aware of is
BrailleTap [1], but we did not compare with it because we did
not require Braille literacy for study participants.

Procedure
We conducted three 1-hour sessions with each participant, with
each pair of consecutive sessions separated by at least 4 hours
but not more than 57 hours for a given participant, as in [29].
Each participant used both GestureCalc and ClassicCalc in
every session, counterbalanced so that half of participants used
GestureCalc frst in their frst and third sessions, while the rest
used GestureCalc frst in their second session.

In the frst session, participants went through a learning period
followed by a testing period for each app. The GestureCalc
learning period started with a facilitator describing each
gesture and giving the participants a chance to perform the
gesture once. The participants were then asked to type
“practice sequences” consisting of the gestures that had just
been learned. Practice sequences included “012345689.”,
“CD”, and “+-*/=”. Each participant was asked to type each
practice sequence three times. The ClassicCalc learning
period started with a facilitator describing the spatial layout
of the classic calculator. The participant was asked to type
the same practice sequences as with GestureCalc. During the
learning period for their frst app, each participant was asked to
set their preferred VoiceOver speed so that their performance
during testing would not be affected due to an uncomfortably
fast or slow VoiceOver speed. The same speed was then used
for all their testing periods throughout the three sessions.

The testing period for each app consisted of a series of trials.
In each trial, the participant was given an arithmetic expression
or computation to enter into the calculator. An example of a
trial is given below:

Desired input: 72 + 58 =
Transcribed input: 73D2 /D+ 59 =
Final input: 72 + 59 =

Each expression was 4 to 6 characters long and had one of the
following two forms:

a) <operand> <operator> <operand> <equals>
b) <operand> <clear>

Each entity (enclosed within <>) was prompted separately
from a laptop, allowing the participant to enter the entity on
the mobile device before the next entity is prompted from the
laptop. This helped the participants to easily remember the
prompts while entering them.

The testing period started with 5 unrecorded warm-up trials.
Warm-up trials were followed by three blocks of 10 recorded
trials. For the recorded trials, participants were requested
to “type as quickly and accurately as you can”. Expressions
in the trials were generated randomly, but we ensured the
same frequencies across digits and across operators within
each block. Each participant was given the same set of
expressions in the same order during session 1. During the
recorded trials, we recorded a time stamp at the beginning and
end of each prompt, gesture (for GestureCalc), button press
(for ClassicCalc), and audio feedback. To calculate the total
time for a trial, we subtracted the time taken to prompt the
expressions so as to only count time taken for character entry.

The second session consisted of a testing period for each
app followed by an interview. The testing period was
conducted exactly as in session 1, except with a different
set of expressions for the recorded trials. During the warm-up
trials, participants had a chance to re-familiarize themselves
with the app and ask for clarifcations if needed. Interview
methodology is described in the following subsection.

In the third session, there was a testing period followed by
a NASA Task Load Index (TLX) [17] for each calculator.
The recorded trials used a different set of expressions from
session 1 or session 2. For the TLX, the facilitator asked
the participants six questions to rate the workload of the
application after using each calculator, based on their use
of that application in session 3 only.

Interview Methodology
Interviews were semi-structured, organized around fve
research questions: 1) What are participants’ current text
input techniques? 2) What are participants’ current calculator
needs? 3) What are the trade-offs between GestureCalcand
other calculators? 4) What improvements can we make to
GestureCalc? and 5) What would it take for GestureCalc to be
adopted? Interviews were conducted by one author in English
and lasted about 30 minutes.

Interview transcripts and interviewer notes were then coded
and organized via thematic analysis [10]. Interviews were
analyzed by the interviewer and a second author. First, they
both independently coded one interview and then discussed
discrepancies to come to a shared understanding of the initial
codes. Each remaining interview was coded by a single author.
Our six initial codes (not to be confused with GestureCalc’s
character codes) were: a code for each of the fve research
questions, a code for “metaphor” motivated by our literature
review. Five inductive codes were added during coding
(e.g., “guesswork”, a term frst mentioned by a participant).
Codes were applied to arbitrary selections of text.

Study Design and Analysis
Our experiment utilized a 2×3×3×10 within-subjects design
with the following factors and levels:

• Technique: ClassicCalc, GestureCalc
• Session: 1-3
• Block: 1-3
• Trial: 1-10

Factors of particular interest were Technique and Session, as
we were interested in how the two techniques compared and
how their performance evolved over the 3 sessions. Within
each session, each of the 8 participants used both techniques
in a series of 3 blocks of 10 trials each, with short breaks in
between. Thus, our study data consisted of 8 × 2 × 3 × 3 ×
10 = 1440 trials in all. For each trial, we computed characters
per second (CPS), uncorrected error rate (UER), a binary
value indicating whether there were any errors in the fnal
calculation, and the corrected error rate (CER). Defnitions for
UER and CER were taken from established text entry research
[39].

For our statistical analyses, we used a linear mixed model
ANOVA for CPS [14, 26, 43]. For our analysis of UER and
CER, which do not conform to the assumptions of ANOVA,
we used the nonparametric aligned rank transform procedure
[19, 37, 38, 46]. In all of these analyses, Technique and
Session were modeled as fxed effects. Block was modeled as a
random effect nested within Session, and Trial was modeled as
a random effect nested within Block and Session. Participant
was also modeled as a random effect to account for repeated
measures. Any effect of VoiceOver speed was considered to
be part of the random effect of Participant.

RESULTS
This section presents the results of our within-subjects
experiment, examining the effects of Technique
(GestureCalc / ClassicCalc) and Session on characters

Figure 5. Characters Per Second by Session × Technique.

per second (CPS), uncorrected error rate (UER), number of
erroneous calculations (NEC) and corrected error rate (CER).

Characters Per Second
We examined speed (i.e., rate of character entry) using
characters per second (CPS). The average CPS for the
ClassicCalc was 0.536 (SD=0.150), whereas the average CPS
for GestureCalc was 0.753 (SD=0.240), a 40.5% speed-up.
An omnibus test showed there were signifcant main effects
of Technique (F1,1340 = 751.34, p < .0001) and Session (F2,6 =
18.24, p < .005) on characters per second. There was also a
signifcant Technique × Session interaction (F2,1340 = 27.45,
p < .0001). Figure 5 shows the characters per second for
GestureCalc and ClassicCalc over each session, averaged over
all participants. The graph shows that GestureCalc has higher
input speed compared to ClassicCalc in all three sessions.

Post hoc pairwise comparisons corrected with Holm’s
sequential Bonferroni procedure [21] reveal that all pairwise
comparisons in Figure 5 are signifcantly different except for
ClassicCalc session 1 versus 2 (t274 = -1.69, n.s.) and 2 versus
3 (t274 = -0.91, n.s.). ClassicCalc improved from session 1 to
3 (t274) = -2.59, p < .05). GestureCalc improved signifcantly
between all sessions: 1 versus 2 (t274 = -5.09, p < .0001),
2 versus 3 (t274 = -3.32, p < .01), and 1 versus 3 (t274 = -8.41,
p < .0001). This indicates participants entered characters at
a faster rate with more practice with GestureCalc, whereas
performance for ClassicCalc had largely saturated.

Uncorrected Error Rate
Uncorrected error rate (UER) refers to the rate of incorrect
characters remaining in the fnal input. Low UER indicates
that participants could reliably and accurately use the
calculator application (i.e., receive the correct output). The
average UER for ClassicCalc is 2.29% (SD=7.84%), whereas
the average UER for GestureCalc is 0.92% (SD=4.40%),
a 59.8% reduction. An omnibus test showed there was a
signifcant main effect of Technique (F1,1340 = 11.06, p < .001)
on UER. However, we did not fnd a main effect of Session
(F2,6 = 2.67, n.s.), nor did we fnd a signifcant Technique ×
Session interaction (F2,1340 = 1.55, n.s.). This means UER
remained similar for both methods over all three sessions.

Figure 6. Number of Erroneous Calculations by Session × Technique.

Number of Erroneous Calculations
An ‘erroneous calculation’ can be defned as any trial that has
uncorrected errors in the fnal input, because such errors would
result in incorrect calculations for the user. ClassicCalc had
69 (9.58%) erroneous trials whereas GestureCalc had only
33 (4.58%) erroneous trials, 52.2% fewer than ClassicCalc.
Fisher’s exact test [13] shows a signifcant difference in
these error proportions in favor of GestureCalc (p < .001).
A second analysis using logistic regression in a generalized
linear mixed model [40] shows that Technique had a signifcant
effect on likelihood of an erroneous trial (χ2

(1,N=1440) = 14.25,
p < .001). There was no Session main effect (χ2

(1,N=1440) =
3.09, n.s.) or Technique × Session interaction (χ2

(2,N=1440)
= 2.81, n.s.), corroborating the aforementioned analyses of
uncorrected error rate. Figure 6 shows that participants
entered more erroneous calculations with ClassicCalc than
with GestureCalc in all three sessions.

Corrected Error Rate
Corrected error rate (CER) refers to the rate of incorrect
characters in the transcribed input that were later corrected
in the fnal input. Corrected errors therefore do not adversely
affect calculator calculations, but they do take time and
attention to fx (i.e., using the delete or clear operators). The
average CER for ClassicCalc is 2.23% (SD=8.00%), whereas
the average CER for GestureCalc is 5.31% (SD=9.65%),
a 138.1% increase. An omnibus test showed there was a
signifcant main effect of Technique (F1,1340 = 27.17, p <
.0001) on CER. An omnibus test also showed a main effect of
Session on CER (F2,6 = 12.67, p < .01). Finally, we found a
signifcant Technique × Session interaction (F2,1340 = 11.44,
p < .0001). The CER values decreased after the frst session,
but increased after the second session.

Post hoc pairwise comparisons conducted with Wilcoxon
signed-rank tests [45] revealed that GestureCalc’s CER was
lower in session 2 than in session 1 (p = .080). By contrast,
ClassicCalc did not show signifcant changes in CER over
sessions. Within session 1, the two techniques were only
marginally different (p = .107). By sessions 2 and 3, the two
techniques were signifcantly different (p < .05).

Figure 7. Uncorrected and Corrected Error Rates by
Session × Technique.

PID GCCPS - CCCPS CCTER - GCTER CCNEC - GCNEC

P1 54.1% -0.013 2
P2 61.4% -0.028 0
P3 30.3% -0.031 -3
P4 12.8% 0.034 9
P5 34.8% -0.067 -5
P6 32.5% -0.049 1
P7 67.3% 0.045 22
P8 39.3% -0.029 10

Table 2. Metrics by participant (larger values imply better performance
of GestureCalc (GC) over ClassicCalc (CC). Here CPS is characters per
second expressed as a percentage over CPS for CC, TER (Total Error
Rate) = UER + CER, and NEC is number of erroneous calculations.

Figure 7 shows the UER and CER values using GestureCalc
and ClassicCalc averaged over all participants. We see that
participants made more errors while entering expressions
using GestureCalc compared to using ClassicCalc, but were
also able to correct the errors more frequently, so that the
fnal inputs using GestureCalc were more accurate than using
ClassicCalc.

Table 2 shows the performance of individual participants based
on our metrics, averaged over all trials in the 3 sessions. We
note that every participant except P4 had more than 30% faster
rate of character entry (CPS) with GestureCalc compared to
ClassicCalc, with negligible difference in the total error rate
(sum of UER and CER). All participants except P4 and P7
also entered fewer erroneous calculations with GestureCalc
compared to ClassicCalc. Overall, we found GestureCalc
was more effcient to use and has a better overall performance
compared to ClassicCalc.

NASA Task Load Index
NASA Task Load Index (TLX) asks participants to rate the
workload of a task on six different scales: mental, physical,
temporal, performance, effort, and frustration [17]. We used
the Wilcoxon signed-rank test to determine the statistical
signifcance of differences.

The mental demand scale prompted participants with the
question, “How mentally demanding was the task?”, and

ranged from low (1) to high (20). The average mental demand
for ClassicCalc was 5.88 (SD=4.64) and for GestureCalc
was 7.50 (SD=4.47). This difference was not statistically
signifcant (Z=-0.63, n.s.). The higher mental demand of
the GestureCalc was due to the learning curve, because
participants were familiar with ClassicCalc but had to
familiarize themselves with GestureCalc.

The physical demand scale prompted participants with
the question, “How physically demanding was the task?”,
and ranged from low (1) to high (20). The average
physical demand for ClassicCalc was 3.13 (SD=2.03) and
for GestureCalc was 3.25 (SD=3.81). This difference was not
statistically signifcant (Z=0.64, n.s.).

The temporal demand scale prompted participants with the
question, “How hurried or rushed was the pace of the
task?”, and ranged from low (1) to high (20). The average
temporal demand for ClassicCalc was 5.13 (SD=5.03) and
for GestureCalc was 3.63 (SD=3.11). This difference was not
statistically signifcant (Z=0.00, n.s.).

The performance scale prompted participants with the
question, “How successful were you in accomplishing what
you were asked to do?”, and ranged from perfect (1) to failure
(20). The average performance rating for ClassicCalc was
4.63 (SD=4.41) and for GestureCalc was 5.50 (SD=3.34).
This difference was not statistically signifcant (Z=-0.70, n.s.).
It is important to note that this rating is in line with our
observation of higher CER but lower UER of GestureCalc
compared to ClassicCalc. Participants mentioned that they
rated their performance more towards failure because they
were aware of the mistakes they made during character entry.

The effort scale prompted participants with the question,
“How hard did you have to work to accomplish your level
of performance?”, and ranged from low (1) to high (20). The
average effort rating for ClassicCalc was 7.00 (SD=4.72) and
for GestureCalc was 6.38 (SD=4.41). This difference was not
statistically signifcant (Z=0.07, n.s.).

INTERVIEW RESULTS
In this section we summarize results from interviews with
participants after they completed the second session.

Calculator Use
Our participants regularly perform a variety of calculations,
with calculations involving money being more frequent.
For personal fnances, participants compute tips, monthly
expenses, and expenses in the grocery store. At work,
participants compute bills and fnancial estimates. One
participant primarily uses a calculator for unit conversion.
P5 highlighted the importance of accessible calculators as she
said, “Right now, I’m studying to take the test to get into math
classes. I haven’t been able to take the test yet because I don’t
have a decent calculator.” Indeed, participants often preferred
to use a laptop or desktop computer for doing calculations
because digits can be typed directly with keyboard buttons,
but perhaps such a computer is not allowed in P5’s math test.

Device Issues
Physicality of devices and fngers played a role in participant
ability to perform gestures accurately. Our phone was too
narrow for some participants to make a three-fnger tap in
portrait mode (the default), so they switched to landscape.
P2 (among others) noted it was important to know where
the edge of the screen was in order to perform the gestures
accurately, saying, “You had to keep your fngers in the middle
of the screen, no matter if you were doing it in landscape
or portrait.” P8 described his own phone case, which has
“a raised rim around both sides, so your fngers don’t actually
get off the touch area of the screen.” P2 also pointed out
that gesture performance could be affected by sweaty fngers,
residue on the screen, or a moving environment such as a bus.

Causes of Errors and Confusion
Participant feedback on the relative diffculty of gestures varied
widely across participants, often conficting. One common
thread was that participants found operators relatively intuitive
(P1, P6, P7). In fact, one participant accidentally tried swiping
to delete while using the classic calculator. The different
blocks in the gesture set design for digits caused confusion.
Despite disagreement on the relative diffculty of the 3 block
and the 6 block, P6 identifed context-switching between the
blocks as an important hurdle, saying, “making that transition
like from a 5 to a 7, that’s a little challenging.”

Memorability and Mental Demand
The mental demand of remembering the codes was the primary
aspect that participants described in their experience using
GestureCalc, and it was a source of error and confusion.
Each participant’s frst session with GestureCalc started
with the facilitator teaching them to use it, so they all had
similar, structured introductions to the codes. As P8 put it,
using GestureCalc “takes a little rearranging of your way
of thinking.” However, participants felt they could learn the
codes through practice and repetition.

Like GestureCalc, learning Braille also requires memorization.
P4 explained, “It’s not a hard learning curve . . . I started to get
a little anxious at frst, because I thought, ‘Oh, no, here we go
with Braille again.’ But once I just let that thought go . . . No, I
wouldn’t hesitate to tell anybody to try this.” For him, learning
our codes was not as challenging as learning Braille. P7, on
the other hand, suspected that people may not bother learning
the codes, saying, “I wouldn’t call this a really steep learning
curve, [but] there’s a learning curve. If I’m downloading a
calculator, I want to be able to just start using it.” Helping
people learn the codes will be an important hurdle in achieving
broad impact and adoption of eyes-free gestures.

Feature Suggestions
Indeed, most of the participants identifed that new users would
need a tutorial or manual to learn the gesture set. It could either
be an interactive tutorial, “similar to [the learning period] that
we did in the frst session” (P7), a text-based “quick-reference”
(P8), or both. We heard a wide variety of suggestions for
improving GestureCalc, including: 1) additional mathematical
operations to support, 2) using the iOS VoiceOver instead of
our custom self-voicing (to avoid having to turn off VoiceOver

and to share VoiceOver’s settings), and 3) ways to navigate,
edit, and read back input or to repeat the output of a calculation.
Although we included a readback feature activated by shaking
the device, it was rarely used.

Some participants suggested redesigning the gesture set. For
example, digit codes could be closely based on the spatial
location of each digit key on a phone keypad, incorporating
upward swipes for keys on the top row and downward
swipes for keys on the bottom row (P3), or numeric gestures
could have the user “trace a number onto the screen” (P8).
P1 participant suggested keeping the operator gestures, but
replacing digit gestures with Braille input or a virtual keypad.
He also suggested tracing a square on the screen for squaring
a number. As a mnemonic device, mapping the squaring
operation to the shape of a square seems promising (at least
for English-speaking users), though previous work argues that
such a shape-based symbolic gesture may be challenging to
recognize accurately while supporting blind users [24].

Helpfulness of Metaphors
GestureCalc gesture codes are based on particular metaphors
(e.g., “A then B” for gestures within digits means “A+ B”, “up
swipes mean increasing”), which we referenced in the training
to help participants remember the codes. P6 mentioned that
these metaphors were useful for him. He explained, “The
fact that [the codes] are in a way that makes sense—up,
more, larger—down, smaller—and those connect well with
plus, minus, times, divide. They have projected outcomes
that you can relate to easily that makes it user friendly.” P8
drew attention to the fact that the metaphors we chose are
not necessarily universal. Explaining his diffculty with the
gestures for 3, 5, and 6, he referred to the uniqueness of his
cognition: “It may have a lot to do with the way I coordinate,
my own thought processes, and the way my brain works.”
This reminds us that different gestures, different codes, and
different calculators should work better for different people.

Comparisons between Calculator Apps
Comparing GestureCalc to ClassicCalc, participants found it
helpful that with GestureCalc they can perform the gesture
anywhere on the screen, but they recognized that in return
this requires memorizing the gestures. Although participants
were generally positive about GestureCalc, P8 felt that he was
slower with GestureCalc because it took “more movement” to
perform the gestures and P2 felt that he made more mistakes
with GestureCalc. P5 pointed out the main improvement of
GestureCalc over other phone calculators when she remarked,
“gestures are good; they take the guesswork out.” The
guesswork involved in using a screen reader is to guess where
to move your fnger on the screen to fnd what you want. In the
words of P1, GestureCalc would improve on this because,
“you wouldn’t have to hunt around the screen.”

Some participants identifed a similarity between
GestureCalc and Braille input systems, as both encode
digits and operators symbolically rather than spatially. As
P5 put it, “For me, Braille screen input sped up my typing
. . . I think that Gesture Calculator would be the exact same
thing. Once people got familiar with how to use it, I think it

would speed up calculations.” Participants who use Braille
inputs appreciated GestureCalc for this similarity to Braille.

DISCUSSION
In this section we discuss the limitations of our study and
issues that arose in the study and interviews.

Limitations
Due to diffculty in recruiting blind participants, we conducted
our study with only 8 participants and over only 3 sessions.
The limited sample of our study provides good evidence,
but results are not fully generalizable nor conclusive. In
addition, the counterbalancing of the order of app usage for
each participant was not ideal because of the odd number
of sessions. Nonetheless, we still observe considerable
uniformity in relative performance of individual participants
on the two calculators in terms of the metrics we used.

Our ClassicCalc app supported standard typing but not touch
typing2, to be consistent across all participants regardless of
the typing mode they prefer. Although standard typing is
thought to be the more conventional mode of text entry, most
of our participants expressed a preference for touch typing,
and some said it was faster for them than standard typing. P6
acknowledged a speed-accuracy tradeoff, noting that touch
typing is more error prone. Those who preferred touch typing,
however, were also familiar with standard typing and appeared
quite fuent in the technique.

Scalability: Adding Operations
Although GestureCalc supports the most common basic
mathematical operations, some participants suggested adding
scientifc operations. If we extended GestureCalc, we would
follow participant suggestions to increase the memorization
requirements as little as possible. One possibility is a modal
approach that does not add unique gestures for each new
symbol but instead uses one or more new prefx gestures
(e.g., unused gestures in Figure 2) to enable reuse of existing
gestures to represent new operators and symbols. Another
possibility is introducing an escape gesture to enter a mode
where the user can swipe through less common operators
and symbols. Such repetitive swiping is a common approach
to exploring and selecting from lists with a screen reader.
These approaches would leave the existing gesture set as-is,
following a design principle of keeping common interactions
easy while making less common interactions possible.

Error Rates and Speedup
A few participants (P2, P3, P4) observed that the gesture
recognition was very sensitive, often capturing stray accidental
touches and interpreting them as gestures. Simple gesture
codes such as “1” (one-fnger tap) can be typed quickly and
easily, but could also easily be generated by accidental touches.
2VoiceOver supports two modes of typing, standard typing and touch
typing. In standard typing, the user seeks for a key by sliding a
fnger over the screen, VoiceOver speaks the name of each key as it
is touched, and the user performs a double tap or split tap anywhere
on the screen to activate last key spoken. In touch typing, the user
slides a fnger across the screen to seek, VoiceOver reads each key
under the fnger, and lifting the fnger activates the last key touched.

In contrast, ClassicCalc is robust to stray touches because
keys are activated by double tap or split tap, which is much
less likely to occur accidentally, but also makes ClassicCalc
slower. This speed-accuracy trade-off may have contributed
to the higher error rate with GestureCalc. Two-gesture digits
may have also raised the error rate with GestureCalc. For
example, consider the situation where a user tries to type “7”
(i.e., a one-fnger upward swipe followed by a one-fnger tap).
If the swipe is incorrectly recognized as a tap and the user
continues typing, they end up typing “11”, generating two
errors that both subsequently need to be deleted.

For ClassicCalc, the amount of time spent typing can be
broken down into think time (deciding what number to type),
seek time (fnding the key), and gesture time (double or split
tap). Because of its target-free design, GestureCalc eliminated
the need to seek for keys, thereby reducing the app’s verbosity.
Participants appreciated the low verbosity of GestureCalc.
P8 said “The amount of speech [in GestureCalc] was right,
it wasn’t overly wordy... one of the problems I have with
a lot of talking devices is they just go on and on and
on.” The low verbosity of GestureCalc might have made
it easier for participants to recognize errors made while typing,
contributing to the low uncorrected error rate of GestureCalc.
Furthermore, the elimination of seek time (one participant
expressed frustration at having to seek for the delete key
with ClassicCalc) and intuitiveness of the delete gesture may
have encouraged error correction with GestureCalc, further
reducing uncorrected error rates. Though the rich gestures
of GestureCalc may take longer than the simple taps of
ClassicCalc, we believe that much of the GestureCalc speedup
can be attributed to elimination of seek time.

Design and Implementation
Out of all the entries for the digit 6, 57% were in the form
3+3 and 43% were in the form 6+0, indicating that having
two possible representations allowed participants to choose
whichever they remembered and validating our design decision
to include both. Participants found three-fnger gestures
diffcult to perform compared to one- or two-fnger gestures.
This was often because it was diffcult for them to synchronize
three differently sized fngers to touch the screen at the same
time or to ft three fngers within the limited screen width. 2
out of 8 participants preferred landscape mode compared to
portrait mode because of additional screen space. Although
landscape mode helped with three-fnger taps and horizontal
swipes, portrait mode was preferred for vertical swipes.

Impact
Potential use cases for GestureCalc are similar to those for
mobile phone calculators for sighted people: for people
without PCs, when in public and / or noisy areas (P7),
calculating tips (P8), shopping (P6), or at their computer
when they have too many windows open (P6). Although any
mobile phone calculator app has limitations (e.g., less powerful
than a desktop computer for calculations), GestureCalc
supports the most common use cases. Furthermore, our
contribution extends beyond the app to include our exploration
of target-free metaphorical gestures for future applications.

GestureCalc employs a rich gesture set, with target-free
gestures conveying a command through the gesture itself.
In contrast, ClassicCalc and many other touch-based apps
use simple targeted gestures, where the command is conveyed
through target location. GestureCalc demonstrates the utility
of rich metaphorical gestures in target-free design, an approach
that can help make designs accessible to a greater population
of users. Apple’s iOS already takes advantage of rich
gestures in its VoiceOver screen reader, making it diffcult
to implement rich gesture apps that are compatible with
VoiceOver because some of the most desirable rich gestures
already activate VoiceOver features. One potential direction
is for gesture-based apps to register their gestures with
VoiceOver, thereby disabling those gestures for VoiceOver
while a registered app is active.

CONCLUSION AND FUTURE WORK
We designed a basic digital calculator application that allows
eyes-free target-free input of digits and operations on touch
screen devices. Our input is based on simple gestures
like taps and swipes with one, two, or three fngers and
the coding scheme is based on conceptual metaphors to
improve the intuitiveness and memorability. We conducted
a study with blind participants to determine the usability,
learnability, and memorability of our gesture set design and
implementation. Participants entered characters signifcantly
faster and made fewer erroneous calculations compared
to a baseline, ClassicCalc. Future research could further
compare the performance of our application with a wider
variety of calculator designs. Our current application
also has room for improvement, such as extending its
capabilities (e.g., additional operations) and considering
additional gestures (e.g., screen-edge gestures [24]).

ACKNOWLEDGMENTS
We would like to thank our participants for the pilot study
and the main study for devoting their time and effort in
our study. We would also like to thank the reviewers for
providing helpful comments. This work was funded in part
by the National Science Foundation under award IIS-1702751
and Grant No. CNS-1539179. This material is based upon
work supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. DGE-1762114.
Any opinions, fndings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily refect the views of the National Science
Foundation.

REFERENCES
[1] Mrim Alnfai and Srinivas Sampalli. 2017. BrailleTap:

Developing a Calculator Based on Braille Using Tap
Gestures. In Universal Access in Human–Computer
Interaction. Designing Novel Interactions. Springer
International Publishing, Cham, 213–223. DOI:
http://dx.doi.org/10.1007/978-3-319-58703-5_16

[2] Apple, Inc. 2018. iPhone Accessibility. (2018).
https://www.apple.com/accessibility/iphone/vision/

[3] Shiri Azenkot, Cynthia L. Bennett, and Richard E.
Ladner. 2013. DigiTaps: Eyes-free Number Entry on

http://dx.doi.org/10.1007/978-3-319-58703-5_16
https://www.apple.com/accessibility/iphone/vision/

Touchscreens with Minimal Audio Feedback. In
Proceedings of the 26th Annual ACM Symposium on
User Interface Software and Technology (UIST ’13).
85–90. DOI:http://dx.doi.org/10.1145/2501988.2502056

[4] Shiri Azenkot, Richard E. Ladner, and Jacob O.
Wobbrock. 2011. Smartphone Haptic Feedback for
Nonvisual Wayfnding. In The Proceedings of the 13th
International ACM SIGACCESS Conference on
Computers and accessibility (ASSETS ’11). ACM,
281–282. DOI:
http://dx.doi.org/10.1145/2049536.2049607

[5] Shiri Azenkot, Kyle Rector, Richard E. Ladner, and
Jacob O. Wobbrock. 2012a. PassChords: Secure
Multi-touch Authentication for Blind People. In
Proceedings of the 14th International ACM SIGACCESS
Conference on Computers and Accessibility (ASSETS
’12). ACM, 159–166. DOI:
http://dx.doi.org/10.1145/2384916.2384945

[6] Shiri Azenkot, Jacob O. Wobbrock, Sanjana Prasain, and
Richard E. Ladner. 2012b. Input Finger Detection for
Nonvisual Touch Screen Text Entry in Perkinput. In
Proceedings of Graphics Interface 2012 (GI ’12).
121–129.

[7] BIHA Studio. 2013. Sumzy for iPhone. (2013).
https://www.youtube.com/watch?v=pHCoEIk_cB4

[8] Frank Boers. 1999. When a Bodily Source Domain
Becomes Prominent: The Joy of Counting Metaphors in
the Socio-economic Domain. Amsterdam Studies in the
Theory and History of Linguistic Science Series 4
(1999), 47–56.

[9] Matthew N. Bonner, Jeremy T. Brudvik, Gregory D.
Abowd, and W. Keith Edwards. 2010. No-look Notes:
Accessible Eyes-free Multi-touch Text Entry. In
International Conference on Pervasive Computing
(PerCom ’10). Springer, 409–426. DOI:
http://dx.doi.org/10.1007/978-3-642-12654-3_24

[10] Virginia Braun and Victoria Clarke. 2006. Using
Thematic Analysis in Psychology. Qualitative research
in psychology 3, 2 (2006), 77–101. DOI:
http://dx.doi.org/10.1191/1478088706qp063oa

[11] Bill Buxton. 1984. Touch Screen Calculator Watch.
(1984). https:
//www.youtube.com/watch?time_continue=1&v=UhVAsqhfhqU

[12] James Clawson, Kent Lyons, Thad Starner, and Edward
Clarkson. 2005. The Impacts of Limited Visual
Feedback on Mobile Text Entry for the Twiddler and
Mini-qwerty Keyboards. In Proceedings of the 9th IEEE
International Symposium on Wearable Computers
(IWSC ’05). IEEE, 170–177. DOI:
http://dx.doi.org/10.1109/ISWC.2005.49

[13] Ronald A. Fisher. 1922. On the Interpretation of χ2

from Contingency Tables, and the Calculation of P.

Journal of the Royal Statistical Society 85, 1 (1922),
87–94. DOI:http://dx.doi.org/10.2307/2340521

[14] Brigitte N. Frederick. 1999. Fixed-, Random-, and
Mixed-Effects ANOVA Models: A User-Friendly Guide
for Increasing the Generalizability of ANOVA Results.
(1999).

[15] Google, LLC. 2018. Android Accessibility Suite. (2018).
https://play.google.com/store/apps/details?id=com.
google.android.marvin.talkback

[16] Anne Hamilton. 2000. Metaphor in Theory and Practice:
The Infuence of Metaphors on Expectations. ACM
Journal of Computer Documentation 24, 4 (2000),
237–253. DOI:
http://dx.doi.org/10.1145/353927.353935

[17] Sandra G. Hart and Lowell E. Staveland. 1988.
Development of NASA-TLX (Task Load Index):
Results of Empirical and Theoretical Research. In
Human Mental Workload, Peter A. Hancock and
Najmedin Meshkati (Eds.). Advances in Psychology,
Vol. 52. North-Holland, 139 – 183. DOI:
http://dx.doi.org/10.1016/S0166-4115(08)62386-9

[18] Tobias Hesselmann, Wilko Heuten, and Susanne Boll.
2011. Tap2Count: numerical input for interactive
tabletops. In Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces (ITS
’11). ACM, 256–257. DOI:
http://dx.doi.org/10.1145/2076354.2076403

[19] James J. Higgins and S. Tashtoush. 1994. An Aligned
Rank Transform Test for Interaction. Nonlinear World 1,
2 (1994), 201–211.

[20] Alexis Hiniker, Sungsoo Hong, Yea-Seul Kim,
Nan-Chen Chen, Jevin D West, and Cecilia Aragon.
2017. Toward the Operationalization of Visual Metaphor.
Journal of the Association for Information Science and
Technology 68, 10 (2017), 2338–2349. DOI:
http://dx.doi.org/10.1002/asi.23857

[21] Sture Holm. 1979. A Simple Sequentially Rejective
Multiple Test Procedure. Scandinavian Journal of
Statistics (1979), 65–70.

[22] Jörn Hurtienne and Luciënne Blessing. 2007. Design for
Intuitive Use - Testing Image Schema Theory for User
Interface Design. In Proceedings of the 16th
International Conference on Engineering Design (ICED
’07), Vol. 7. Citeseer, 1–12.

[23] Shaun K. Kane, Jeffrey P. Bigham, and Jacob O.
Wobbrock. 2008. Slide Rule: Making Mobile Touch
Screens Accessible to Blind People Using Multi-touch
Interaction Techniques. In Proceedings of the 10th
International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS ’08). ACM,
73–80. DOI:http://dx.doi.org/10.1145/1414471.1414487

http://dx.doi.org/10.1145/2501988.2502056
http://dx.doi.org/10.1145/2049536.2049607
http://dx.doi.org/10.1145/2384916.2384945
https://www.youtube.com/watch?v=pHCoEIk_cB4
http://dx.doi.org/10.1007/978-3-642-12654-3_24
http://dx.doi.org/10.1191/1478088706qp063oa
https://www.youtube.com/watch?time_continue=1&v=UhVAsqhfhqU
https://www.youtube.com/watch?time_continue=1&v=UhVAsqhfhqU
http://dx.doi.org/10.1109/ISWC.2005.49
http://dx.doi.org/10.2307/2340521
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback
http://dx.doi.org/10.1145/353927.353935
http://dx.doi.org/10.1016/S0166-4115(08)62386-9
http://dx.doi.org/10.1145/2076354.2076403
http://dx.doi.org/10.1002/asi.23857
http://dx.doi.org/10.1145/1414471.1414487

[24] Shaun K. Kane, Jacob O. Wobbrock, and Richard E.
Ladner. 2011. Usable Gestures for Blind People:
Understanding Preference and Performance. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11). 413–422. DOI:
http://dx.doi.org/10.1145/1978942.1979001

[25] George Lakoff and Mark Johnson. 1980. The
Metaphorical Structure of the Human Conceptual
System. Cognitive science 4, 2 (1980), 195–208. DOI:
http://dx.doi.org/10.1207/s15516709cog0402_4

[26] R. C. Littell, P. R. Henry, and C. B. Ammerman. 1998.
Statistical Analysis of Repeated Measures Data Using
SAS Procedures. Journal of Animal Science 76, 4
(1998), 1216–1231. DOI:
http://dx.doi.org/10.2527/1998.7641216x

[27] Diana Loeffer, Anne Hess, Andreas Maier, Joern
Hurtienne, and Hartmut Schmitt. 2013. Developing
Intuitive User Interfaces by Integrating Users’ Mental
Models into Requirements Engineering. In Proceedings
of the 27th International BCS Human Computer
Interaction Conference. British Computer Society, 15.

[28] Diana Löffer, Klara Lindner, and Jörn Hurtienne. 2014.
Mixing Languages’: Image Schema Inspired Designs for
Rural Africa. In Proceedings of the Extended Abstracts
of the 32nd Annual ACM Conference on Human Factors
in Computing Systems (CHI ’14). ACM, 1999–2004.
DOI:http://dx.doi.org/10.1145/2559206.2581356

[29] I. Scott MacKenzie and Shawn X. Zhang. 1999. The
Design and Evaluation of a High-performance Soft
Keyboard. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’99). 25–31.
DOI:http://dx.doi.org/10.1145/302979.302983

[30] Sergio Mascetti, Cristian Bernareggi, and Matteo Belotti.
2011. TypeInBraille: A Braille-based Typing
Application for Touchscreen Devices. In The
Proceedings of the 13th International ACM SIGACCESS
Conference on Computers and Accessibility (ASSETS
’11). ACM, 295–296. DOI:
http://dx.doi.org/10.1145/2049536.2049614

[31] Mehmed Mert and Ergün Kayis. 2013. Swipe Calculator
for Android. (2013). http://www.swipecalculator.com/

[32] MyScript. 2013. MyScript Calculator 2. (2013).
https://www.myscript.com/calculator/

[33] National Federation of the Blind. 2009. The Braille
Literacy Crisis in America. (2009).

[34] João Oliveira, Tiago Guerreiro, Hugo Nicolau, Joaquim
Jorge, and Daniel Gonçalves. 2011. BrailleType:
Unleashing Braille Over Touch Screen Mobile Phones.
In IFIP Conference on Human-Computer Interaction.
Springer, 100–107. DOI:
http://dx.doi.org/10.1007/978-3-642-23774-4_10

[35] Rechner. 2012. Rechner Calculator. (2012).
http://rechner-app.com/

[36] Vaspol Ruamviboonsuk, Shiri Azenkot, and Richard E.
Ladner. 2012. Tapulator: A Non-visual Calculator Using
Natural Prefx-free Codes. In Proceedings of the 14th
International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS ’12). 221–222.
DOI:http://dx.doi.org/10.1145/2384916.2384963

[37] K. C. Salter and R. F. Fawcett. 1985. A Robust and
Powerful Rank Test of Treatment Effects in Balanced
Incomplete Block Designs. Communications in
Statistics-Simulation and Computation 14, 4 (1985),
807–828. DOI:
http://dx.doi.org/10.1080/03610918508812475

[38] K. C. Salter and R. F. Fawcett. 1993. The ART Test of
Interaction: A Robust and Powerful Rank Test of
Interaction in Factorial Models. Communications in
Statistics-Simulation and Computation 22, 1 (1993),
137–153. DOI:
http://dx.doi.org/10.1080/03610919308813085

[39] R. William Soukoreff and I. Scott MacKenzie. 2003.
Metrics for Text Entry Research: An Evaluation of MSD
and KSPC, and a New Unifed Error Metric. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’03). ACM,
113–120. DOI:
http://dx.doi.org/10.1145/642611.642632

[40] Robert Stiratelli, Nan Laird, and James H. Ware. 1984.
Random-Effects Models for Serial Observations with
Binary Response. Biometrics (1984), 961–971. DOI:
http://dx.doi.org/10.2307/2531147

[41] Hussain Tinwala and I. Scott MacKenzie. 2009.
Eyes-free Text Entry on a Touchscreen Phone. In 2009
IEEE Toronto International Conference Science and
Technology for Humanity (TIC-STH ’09). IEEE, 83–88.
DOI:http://dx.doi.org/10.1109/TIC-STH.2009.5444381

[42] Amy Vidali. 2010. Seeing What We Know: Disability
and Theories of Metaphor. Journal of Literary &
Cultural Disability Studies 4, 1 (2010), 33–54. DOI:
http://dx.doi.org/10.1353/jlc.0.0032

[43] Brady T. West. 2009. Analyzing Longitudinal Data with
the Linear Mixed Models Procedure in SPSS.
Evaluation & the Health Professions 32, 3 (2009),
207–228. DOI:
http://dx.doi.org/10.1177/0163278709338554

[44] Wikipedia. 2018. Braille.
https://en.wikipedia.org/wiki/Braille. (2018).

[45] Frank Wilcoxon. 1945. Individual Comparisons by
Ranking Methods. Biometrics bulletin 1, 6 (1945),
80–83. DOI:
http://dx.doi.org/10.1007/978-1-4612-4380-9_16

[46] Jacob O. Wobbrock, Leah Findlater, Darren Gergle, and
James J. Higgins. 2011. The Aligned Rank Transform
for Nonparametric Factorial Analyses Using Only
ANOVA Procedures. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’11). ACM, 143–146. DOI:
http://dx.doi.org/10.1145/1978942.1978963

http://dx.doi.org/10.1145/1978942.1979001
http://dx.doi.org/10.1207/s15516709cog0402_4
http://dx.doi.org/10.2527/1998.7641216x
http://dx.doi.org/10.1145/2559206.2581356
http://dx.doi.org/10.1145/302979.302983
http://dx.doi.org/10.1145/2049536.2049614
http://www.swipecalculator.com/
https://www.myscript.com/calculator/
http://dx.doi.org/10.1007/978-3-642-23774-4_10
http://rechner-app.com/
http://dx.doi.org/10.1145/2384916.2384963
http://dx.doi.org/10.1080/03610918508812475
http://dx.doi.org/10.1080/03610919308813085
http://dx.doi.org/10.1145/642611.642632
http://dx.doi.org/10.2307/2531147
http://dx.doi.org/10.1109/TIC-STH.2009.5444381
http://dx.doi.org/10.1353/jlc.0.0032
http://dx.doi.org/10.1177/0163278709338554
http://dx.doi.org/10.1007/978-1-4612-4380-9_16
http://dx.doi.org/10.1145/1978942.1978963
https://en.wikipedia.org/wiki/Braille

	Introduction
	Related Work
	Gestures and Metaphors
	Eyes-free Entry
	Existing Products

	Design
	Gestures
	Character Codes
	Digits
	Operations

	Formative Pilot Study
	Additional Features

	Evaluation Method
	Participants
	Apparatus and Conditions
	Procedure
	Interview Methodology
	Study Design and Analysis

	Results
	Characters Per Second
	Uncorrected Error Rate
	Number of Erroneous Calculations
	Corrected Error Rate
	NASA Task Load Index

	Interview Results
	Calculator Use
	Device Issues
	Causes of Errors and Confusion
	Memorability and Mental Demand
	Feature Suggestions
	Helpfulness of Metaphors
	Comparisons between Calculator Apps

	Discussion
	Limitations
	Scalability: Adding Operations
	Error Rates and Speedup
	Design and Implementation
	Impact

	Conclusion and Future Work
	Acknowledgments
	References

