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Abstract— Conventional supervised content-based remote sens-
ing (RS) image retrieval systems require a large number of
already annotated images to train a classifier for obtaining high
retrieval accuracy. Most systems assume that each training image
is annotated by a single label associated to the most significant
semantic content of the image. However, this assumption does not
fit well with the complexity of RS images, where an image might
have multiple land-cover classes (i.e., multilabels). Moreover,
annotating images with multilabels is costly and time consuming.
To address these issues, in this paper, we introduce a semisu-
pervised graph-theoretic method in the framework of multilabel
RS image retrieval problems. The proposed method is based
on four main steps. The first step segments each image in the
archive and extracts the features of each region. The second step
constructs an image neighborhood graph and uses a correlated
label propagation algorithm to automatically assign a set of labels
to each image in the archive by exploiting only a small number
of training images annotated with multilabels. The third step
associates class labels with image regions by a novel region
labeling strategy, whereas the final step retrieves the images
similar to a given query image by a subgraph matching strategy.
Experiments carried out on an archive of aerial images show the
effectiveness of the proposed method when compared with the
state-of-the-art RS content-based image retrieval methods.

Index Terms— Content-based image retrieval (CBIR),
correlated label propagation, multilabel categorization, region
adjacency graph (RAG), remote sensing (RS), semisupervised
learning, subgraph matching.

I. INTRODUCTION

W ITH the advancement of satellite technology, the vol-
ume of remote sensing (RS) image archives and the

amount of information that can be extracted from them
have largely increased. As a result, content-based image
retrieval (CBIR) has recently become an important topic
of research in RS in order to keep up with the growing
need of automatization. A CBIR system generally has two
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main steps [1]: 1) feature extraction in which the images
are described and represented by a set of features and
2) image matching in which the query image is matched based
on the features with all the images in the archive and the most
relevant images are retrieved. Accordingly, the performance of
the CBIR systems depends on the capability and effectiveness
of: 1) the extracted features in characterizing the semantic
content of the images and 2) the retrieval algorithms in
evaluating the similarity among the considered features. In the
RS literature, global image representations based on a set of
local descriptors have been found effective. As an example,
in [2], local descriptors extracted by the scale invariant feature
transform (SIFT) and their bag-of-visual-words representations
have been introduced. In [3], bag-of-morphological-words
representations of local morphological texture descriptors are
computed in the context of CBIR. Local binary pattern (LBP)
and local phase quantization (LPQ) descriptors, introduced
in [4], are defined by initially assigning a binary code to each
image pixel by thresholding its neighboring sample values and
then computing a histogram of the codes. After extracting
the image descriptors, image retrieval is achieved using the
k-nearest neighbor (k-NN) algorithm or an optimized search
strategy [2]–[4], where the retrieval system ranks the images
based on their feature similarity with the query image and
then displays the most similar images in the order of similarity.
All the above-mentioned descriptors are potentially effective in
modeling RS image content, but they do not model the possible
primitives (such as different land-cover classes) present in
images and their relationships. This may result in a large
semantic gap between the low-level features and the high-level
semantic concepts present in RS images.

To narrow down the semantic gap and improve the retrieval
performance, few promising supervised and unsupervised
methods have been developed in RS. In [5], a system to effi-
ciently and accurately perform content-based shape retrieval of
objects from an RS image archive is presented. In [6] and [7],
methods that model images using graphs (which effectively
capture both region characteristics and the spatial relationships
among the regions) and compare the similarity among the
images using graph matching techniques have been introduced.
Chaudhuri et al. [6] have introduced an unsupervised RS
image retrieval approach in which each image in the archive
is modeled as an attributed relational graph, where the nodes
represent region properties and the edges represent the spatial
relationships among the regions. Image similarity is then esti-
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Fig. 1. Examples of images in the considered archive and the multil-
abels associated with them. (a) Grass, buildings, bare soil, and pavement.
(b) Buildings, pavement, trees, and cars. (c) Buildings, pavement, trees,
and cars.

mated using an inexact graph matching strategy, which jointly
exploits a subgraph isomorphism algorithm (for node match-
ing) and a spectral embedding algorithm (for edge matching).
This approach has been found to be very promising, but it may
lead to less accurate retrieval results for query images with
highly complex semantic content. In [7], image regions are
obtained in a supervised manner using pixel-based classifiers
and an iterative split-and-merge technique and scenes are then
modeled by attributed relational graphs. As also presented
in [8], supervised retrieval methods, which require a large
number of already annotated images to train the considered
classifier, have been found very effective to reduce the seman-
tic gap. However, most of the existing supervised methods
consider each of the training images to be annotated by only
a single label describing the most significant connotation of the
image in terms of land-cover classes. Fig. 1(a) shows an image
that was categorized as baseball diamond in a well-known RS
archive (see Section III for the details on the archive), but
one can see that it contains three different primitive classes,
such as grass, buildings, and bare soil. On the other hand,
Fig. 1(b) and (c) contains the same primitive classes but, in the
considered archive, they were categorized as dense residential
and medium residential, respectively. We would like to point
out that single (broad category) labels to categorize images
may be sufficient for some particular applications, but region
level description is required for more complex applications.
For example, to distinguish between a beach and a residential
area, it is not necessary to separately label “sea,” “sand,”
“buildings,” etc. However, it is very difficult to distinguish
between categories like “dense residential” [see Fig. 1(b)]
and “medium residential” [see Fig. 1(c)] using broad cat-
egory labels only, as this requires information about the
spatial arrangement of the buildings, pavement, etc. Moreover,
the multiple class labels (multilabels) given to an image usu-
ally have co-occurrence relationships, i.e., land-cover classes,
are correlated with each other. For example, land-cover classes
such as buildings and pavement are more likely to be assigned
to the same image and are thus highly correlated. Hence,
the characteristics and geometric arrangement of the multiple
primitive classes present in the images are crucial for an
efficient retrieval. Accordingly, CBIR methods that properly
exploit the multilabels in RS images are required.

To address these problems, multilabel learning methods
have been recently found very promising in computer vision
literature for multilabel image search and retrieval problems,

where multiple class labels are simultaneously assigned to
each image [9]–[14]. In [9], one-versus-all support vector
machine (SVM) classifiers are used for multilabel scene
categorization, where each classifier is trained to solve a
binary classification problem defined by one primitive class
against all the others. In [10], image regions are classified
using one-versus-one SVM classifiers and an optimal feature
subset is selected from standard visual features using a genetic
algorithm. The multilabel annotations of the query image are
refined using the PageRank algorithm and text-based retrieval
is performed at the end. In [11], multilabel k-NN is introduced,
which adopts a maximum a posteriori principle to determine
the label set of the query image based on the statistical
information derived from the label sets of its k-nearest neigh-
bors. In [12], canonical correlation analysis, which learns a
common subspace and finds the correlation between image
features and textual tags, is exploited to perform cross-modal
retrieval. In [13], simultaneous recognition and localization of
multiple classes in images are performed using random forests,
dense pixel matching, and genetic algorithm optimization.
A comparative study of multilabel classification methods for
image annotation and retrieval problems is given in [14].
However, the use of multilabel image retrieval methods is
seldom considered in RS. As an example, in [15], multilabel
RS image retrieval system is presented. This system initially
produces a classification map of the query image and of each
image in the archive using an object-based SVM classifier and
neglects the images that do not include the same land-cover
classes as the query image. Then, the remaining images are
represented by graphs-based descriptors and a graph matching
technique is applied to retrieve the most similar images to the
query image. However, this system has the limitation that in
order to perform region classification, it requires a reliable
pixel-based training set that is representative of all the land-
cover classes within each image in the archive (which is
critical in large RS archives). We would like to emphasize that
pixel-based RS image classification is appropriate for land-
cover maps generation problems (where there is a need to
classify only a single image), but it is not practical and efficient
in real RS image search and retrieval applications, especially
when huge archives of RS images are considered. Moreover,
collecting annotations on multilabels is time consuming and
costly.

To overcome the above-mentioned critical issues, in this
paper, we propose a semisupervised graph-theoretic method
in the framework of multilabel RS image retrieval problems.
The proposed method is based on four main steps:
1) image segmentation and feature extraction; 2) multil-
abel image categorization; 3) automatic region labeling; and
4) image retrieval. The method requires that the user initially
selects a small fraction of images in the archive as training
images, assigns multiple class labels to each image depending
on the primitive classes present in it, and also annotates a
few regions of those images with the corresponding labels.
Then, the first step segments each image in the archive into
semantically meaningful regions and extracts features from
these regions. The second step aims to automatically assign
multilabels to each image in the archive using a graph-based
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Fig. 2. Block diagram of the proposed semisupervised graph-theoretic method.

semisupervised algorithm. In this algorithm, a neighborhood
graph is initially constructed taking all the images in the
archive, where the nodes represent the images and the edges
represent the neighbors of the images in terms of similarity.
Then, the class labels of the training images are propagated
using a correlated label propagation method to the unlabeled
images to associate them with multiple labels. Once the
user selects an image for query, the system determines the
multilabels associated with the query image and filters out all
the images from the archive that do not have those labels.
In the third step, the small amount of region labels of the
training images is used to associate the multilabels of each
image to the corresponding regions in the image. The fourth
step consists in constructing a vertex-labeled edge-weighted
undirected graph for each image and matching the graphs
using the spectral matching (SM) algorithm [16]. Finally,
the images similar to the query image are retrieved in the order
of graph similarity values. The proposed method is semisuper-
vised because in the second step, the structure of both labeled
and unlabeled data in the feature space (i.e., region descriptors
of each image) is used together with labels of regions in the
training images. The novelty of the proposed system is the
introduction of a semisupervised graph-theoretic method in the
framework of content-based multilabel remote sensing image
retrieval.

In order to evaluate the performance of the proposed
method, we consider a benchmark archive that is frequently
used in RS for CBIR problems (see Section III). In the current
literature, the images within the considered archive have been
annotated using only one category label, whereas to use it
in our experiments, we have relabeled and annotated them
with multilabels by visual inspection. Experiments carried
out on the multilabeled archive demonstrate the effectiveness
of the proposed method in terms of the retrieval accuracy.
The rest of this paper is organized as follows. Section II
describes the proposed method explaining the various steps
involved. Section III illustrates the benchmark archive and the
experimental settings. Experimental results and discussion are
given in Section IV, while Section V draws the conclusion of
the work.

II. PROPOSED METHOD

A. Problem Formulation

Given a query image Xq and an archive X = {X1, X2,
. . . , XI } of I RS images, the aim of the proposed semisu-
pervised method is to retrieve all images from the archive
having a similar pattern of regions as the query image. At first,
a few images are randomly chosen from X to form a set
T of training images. Let L = {1, 2, . . . , |L|} be the set
of all possible class labels associated with the images in
the considered archive. Each training image Xt ∈ T is then
associated with a vector Lt = [l1

t , l2
t , . . . , l |L|

t ] of labels, where
lc
t = 1 if Xt contains the class label c ∈ L and lc

t = 0
otherwise. Let rp

t be the pth labeled region in the set of P
labeled regions of Xt ∈ T, where P is a small number. Each
class label present in Xt is then assigned to at least one of the
P regions until all the P regions are labeled. A complete list
of the notations and the related definition used in this paper is
given in the Appendix. In order to retrieve the visually most
similar images to Xq from X using the multilabel information
of the images, the proposed method is characterized by four
main steps: 1) image segmentation and feature extraction;
2) multilabel image categorization using the multilabels of
the training images; 3) automatic region labeling using a few
region labels of the training images; and 4) image retrieval
based on a subgraph matching strategy. Fig. 2 presents the
block scheme of the proposed semisupervised graph-theoretic
method. The steps are explained in detail in the subsequent
sections.

B. Image Segmentation and Feature Extraction

This step aims to obtain the regions and their features
from each image in the archive. To obtain the regions,
each image Xi is segmented into ni semantically meaningful
regions that form the set {r1

i , r2
i , . . . , rni

i }, where rk
i is the

kth region of Xi . Unsupervised segmentation of the images is
achieved using the parametric kernel graph cut algorithm [17].
The algorithm initially involves implicit mapping of the non-
linearly separable image data into a higher dimensional space
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using a kernel function. Then the objective functional is opti-
mized using an iterative two-step process: 1) fixing the labeling
and minimizing the functional with respect to the region
parameters and 2) given the region parameters, minimizing
the functional with respect to the image partitioning. This
ensures the convergence of the algorithm and gives optimally
segmented regions. It is worth noting that the proposed method
is independent of the choice of the segmentation algorithm.
However, the accuracy of the segmentation results semanti-
cally affects the performance of the proposed CBIR technique.
Hence, an efficient unsupervised segmentation algorithm that
segments images into semantically meaningful regions should
be chosen. After segmentation, features are extracted from
each region to create a feature vector fk

i for each region rk
i .

The reader is referred to Section III for detailed information
about the features used in our method.

C. Multilabel Image Categorization

This step aims to assign multilabels to each image in the
archive as well as to the query image based on the charac-
teristics of the regions present in the image. The multilabel
image categorization task is achieved in three substeps. First,
a neighborhood graph is constructed using the images in the
archive as the nodes and their feature similarity relationships
as the edges. Second, class labels are propagated from the
training images to the unlabeled images to obtain their label
scores using the edge weights determined from the image pair
distances. Finally, the label scores of the unlabeled images are
thresholded appropriately to convert them into binary values,
thereby associating each image in the archive with class labels.
Thus, this step adopts a semisupervised approach to label the
unlabeled images with a few multilabeled images by exploiting
the correlation that exists among the multilabels. The substeps
are described below.

1) Neighborhood Graph Construction: This substep aims
to construct a graphical structure with the images as nodes
such that each image is connected to only a few images in its
neighborhood. A neighborhood graph for an archive is defined
as a graph G = (X, E, W), where E is the set of graph edges
and W ∈ R

I×I is the weight matrix of the graph containing
edge information. Each node represents an image Xi in the
archive and Ni denotes the set of K neighboring images of
Xi according to some similarity measure. An edge is defined
between Xi and X j if X j ∈ Ni and is then assigned a
corresponding weight W(i, j) so as to minimize the following
value [18]:

ζ =
I∑

i=1

∥∥∥∥∥∥
Xi −

∑

j :X j∈Ni

W(i, j)X j

∥∥∥∥∥∥

2

s.t. W(i, j) ≥ 0 ∀ i, j and
∑

j :X j∈Ni

W(i, j) = 1. (1)

The intuitive idea behind minimizing the above cost function
is to approximate each image representation by a weighted
linear sum of the image representations lying in its neigh-
borhood. Hence, the weights W(i, j) are also known as the

reconstruction weights. The values of W(i, j) for those values
of i, j for which edges do not exist are set to zero.

In order to compute the reconstruction weight W(i, j) that
satisfies (1) for all X j ∈ Ni , the distances between Xi and
each X j are computed, then arranged in descending order
(so that the most similar image to Xi is placed at the beginning
of the order and the least similar one at the end), and then
normalized to sum-to-one. Thus, the higher is the similarity of
an image with its neighbor, the higher is the weight assigned
to the corresponding edge connecting them in the graph G.
The same process is repeated for each Xi , i = 1, 2, . . . , I
to construct the final weight matrix W of the neighborhood
graph. The features and the distance metric we have used to
find the nearest neighbors of an image are given in Section III.

2) Correlated Label Propagation: After the calculation of
the reconstruction weights of the neighborhood graph, we aim
to transmit the class labels from the training images to the
unlabeled images. Most of the prevalent approaches propagate
the labels independently without taking into consideration the
inherent correlation that exists among the multilabels. In the
proposed method, we adopt the scheme introduced in [18] to
exploit this correlation and thereby propagate the labels all at
a time. The label vector of an unlabeled image is obtained as
a weighted combination of the label vectors of its neighboring
images. This is due to the fact that an image most likely
contains the same primitive classes as the ones present in its
similar images with the most similar image having the greatest
influence.

In order to form the weighted combinations, we create a
matrix of the label vector values, as in [18], and update the
values of the matrix by performing elementary row operations
using the reconstruction weights in W. We start by creating
a matrix Y ∈ {0, 1}I×|L|, whose i th row is equal to the
label vector Li of Xi ∈ X. The label vector of an unlabeled
image Xt ′ ∈ X \ T is initiated to Lt ′ = {0}1×|L|. A matrix
Ỹ is then initialized with the values of Y and subsequently
updated by performing the following iteration until the values
of Ỹ converge:

Ỹ = βWỸ + (1 − β)Y. (2)

Here β (0 < β < 1) is a parameter that determines the
amount of label information each image receives from its
neighbors compared with its existing label information. Hence,
after each iteration, the new label vector of an image is the
weighted average of its original label vector and a weighted
combination of the label vectors of the most similar images.
After the convergence, Ỹ(i, c) ∀ i = 1, 2, . . . , I denotes the
cth label score for Xi . The convergence analysis of (2) is given
in [18]. It is to be noted that although the values of the label
vectors are known for the training images, they are changed
to real-valued label scores during the iteration of (2). These
changed values are used for label score binarization in the
next substep. Each image Xt ′ ∈ X \ T is now associated with
a vector L̃t ′ = [l̃1

t ′, l̃2
t ′, . . . , l̃ |L|

t ′ ] of real-valued label scores,
where l̃c

t ′ = Ỹ(t ′, c).
3) Label Score Binarization: This is the last substep of the

multilabel categorization algorithm that aims to discretize the
label scores obtained from label propagation into binary values
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in order to indicate the presence or absence of a class label in
a particular image. Our approach of label score binarization is
inspired to [19]. For binarization, a threshold th is determined
by taking the minimum of the label score values of all the
training images. The elements of the label vector of each
unlabeled image Xt ′ ∈ X \ T are then calculated as lc

t ′ = 1 if
l̃c
t ′ ≥ th and lc

t ′ = 0 otherwise. Thresholding of the label scores
results in converting the score vector L̃t ′ to the label vector Lt ′
for each unlabeled image. Thus, the multilabel categorization
algorithm finally associates each image Xi ∈ X with a label
vector Li . When the query image Xq is given as input to the
system, the retrieval system performs multilabel categorization
of Xq to determine the class labels (vector Lq ) associated
with it. The system then searches for all images Xi ∈ X for
which Lq · Li ≥ 1 and forms a set Xsub ⊂ X of the images
satisfying the criterion. The remaining images in the archive
are then filtered out and only the images in Xsub are considered
for the subsequent steps of the method. The performance of
this step, which greatly affects the retrieval results, depends
on how well the system learns the characteristic features of
the regions and identifies the primitive classes contained in
the unlabeled images. For example, if a sand region in an
image is not identified as sand and the query image contains
the class sand, that image is not retrieved by the system as it
is eliminated as an irrelevant image after this step. We have
chosen our features carefully to avoid this problem.

D. Automatic Region Labeling

The third step of the proposed method is automatic region
labeling, which aims to exploit a few labeled regions of the
training images to assign an appropriate label to each region
of the images Xi ∈ Xsub. It is worth noting that the region
labels of only those training images that belong to the set
Xsub are ultimately used while querying. In each training
image Xt ∈ Xsub, labels are assigned to a small number of
regions based on a manual visual analysis. Each of the
remaining unlabeled regions in Xt is then assigned with the
label of the most similar labeled region. The similarity of an
unlabeled region with a labeled region is computed by the
distance d(·, ·) between their corresponding feature vectors.
The distance measures we have used in our method are given
in Section III. This approach requires that each primitive class
present in Xt has at least one corresponding labeled region for
an accurate classification. Fig. 3 shows an example of how
region labeling is done for a training image. After completing
the labeling of regions of all the training images Xt ∈ Xsub,
the prototype feature vector for each class label c ∈ L is
computed by taking the average of the feature vectors of all
the newly formed regions in the training images having the
label c.

In the case of unlabeled images Xt ′ ∈ Xsub having no
labeled regions, all regions are labeled in the same manner.
To label a region rk

t ′ of Xt ′ , we compute the dissimilarity d(·, ·)
between the feature vector fk

t ′ and each of the prototype feature
vectors of only those class labels that are associated with Xt ′ .
Then, rk

t ′ is assigned the label c for which the value of d(·, ·)
is minimum. Thus, after region labeling, each class label c

Fig. 3. Example of region labeling of a training image. (a) Original
image with labeled regions. (b) Segmented image. (c) Region-labeled image.
In (a), the regions with red squares are labeled airplane, the regions with
yellow stars are labeled grass, the regions with green circles are labeled cars,
and the regions with blue triangles are labeled bare soil. In (b), each region
with a different color indicates a different segment. In (c), the black regions
denote airplane, the dark gray regions denote cars, the light gray regions
denote grass, and the white regions denote bare soil.

Fig. 4. Example of region labeling of an unlabeled image. (a) Original
image. (b) Segmented image. (c) Region-labeled image. In (b), each region
with a different color indicates a different segment. In (c), the black regions
denote buildings, the darkest gray regions denote tanks, the medium gray
region denotes pavement, the lightest gray region denotes bare soil, and the
white regions denote trees.

contained in Xt ′ ∈ Xsub is assigned to one or more regions
of Xt ′ . Fig. 4 shows an example of how region labeling is
done for an unlabeled image.

E. Image Retrieval Based on a Subgraph Matching Strategy

The fourth and final step of the proposed method aims
to construct a region adjacency graph (RAG) for the query
image Xq and each image Xi ∈ Xsub and measure the
similarity of the images using a subgraph matching strategy.
A RAG of an image Xi is defined as Gi = (Vi , Ei , Ai ),
where Vi = {r1

i , r2
i , . . . , rni

i } is the set of ni nodes,
Ei = {e(s,t)

i | s, t ∈ {1, 2, . . . , ni }} is the set of edges that
link the nodes, and Ai ∈ R

ni ×ni is the weighted adjacency
matrix containing edge information. An edge e(s,t)

i exists if
the regions r s

i and r t
i are adjacent to each other. To define

the edges, we construct from the segmented Xi an adjacency
matrix Ai , whose initial entries are logical 0s and 1s, with
Ai (r s

i , r t
i ) = 1 if e(s,t)

i exists and Ai (r s
i , r t

i ) = 0 otherwise.
Each edge is then assigned an attribute as follows:
Ai

(
r s

i , r t
i

) = α1
∥∥fs

i − f t
i

∥∥
2 + α2

(∥∥crs
i
− crt

i

∥∥
2 + ∣∣θrs

i
− θrt

i

∣∣)

(3)

where crs
i

and crt
i

are the centroids of the pixel coordinates
within the regions r s

i and r t
i , respectively, and fs

i and f t
i are

the feature vectors of the regions r s
i and r t

i , respectively.
θrs

i
and θrt

i
are the orientation angles of those regions (angle

between the horizontal axis and the major axis of the ellipse
having the same second moments as the region, such that



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 5. Example of step-wise graph construction from an image.
(a) Original image. (b) Segmented image. (c) Node formation and edge
attribute description. (d) Created graph.

θ ∈ [−900,+900]) and || · ||2 is the L2 norm. The orientation
angles are included for retrieval of images with high visual
similarity and the choice of using the orientation angles
depends on the final goal of retrieval. If the orientation angle is
not relevant for the objects in the images in a given archive,
it can be neglected. Each term is normalized before adding
so that all the values are comparable when combined. It is
worth noting that the sequencing of the regions and class
labels does not affect the shape of the constructed graphs.
The weights α1 and α2 should be selected after taking into
account the importance of the related variables in the retrieval.
For undirected property of the graphs, we have made Ai

symmetric, i.e., Ai (r s
i , r t

i ) = Ai (r t
i , r s

i ). The diagonal elements
of Ai are set as Ai (r s

i , r s
i ) = c where c is the numeric value

of the label assigned to the region r s
i . In order to better

understand this step, Fig. 5 shows a qualitative example of
RAG construction for an image. Note that the graph shown
in Fig. 5 is not a rigid structure; it is merely a diagrammatic
representation for visual understanding.

After graph construction, the method measures the similarity
between Xq and each image Xi ∈ Xsub by matching the corre-
sponding graphs Gq and Gi and ranks the images in the order
of graph similarity values. Spectral graph matching methods,
which utilize the property of invariance of eigenvalues for
isomorphic graphs, have recently gained popularity as effective
graph matching techniques. In the proposed method, we have
used the SM [16] algorithm to solve the optimization problem.
Although other methods available in the literature [20]–[23]
have been proved to give more accurate matching results
compared with the SM algorithm, they require computational
time that is several orders of magnitude higher than that taken
by the SM algorithm. Hence, the SM algorithm is chosen to
provide the solution to the graph matching problem quickly
and efficiently in order to achieve fast retrieval.

The SM algorithm formulates the problem of subgraph
matching as the problem of finding the optimal indicator
vector y∗ ∈ {0, 1}nq ni that maximizes a quadratic score
function y∗ = argmax(yT My) where M ∈ R

nq ni ×nq ni is
the affinity matrix, subject to the one-to-one (or many-to-one
depending on requirement) matching constraint and the integer
constraint (which ensures that y can take only binary values).
Each diagonal element of M, i.e., M(us, us), measures the
similarity between the regions (nodes) ru

q of Xq and r s
i

of Xi , and is hence computed as M(us, us) = e−|nc′−nc |,
where c′ and c are the labels of ru

q and r s
i , respectively.

Each nondiagonal element of M, i.e., M(us, vt), measures
the similarity between the edges e(u,v)

q and e(s,t)
i , and is

Algorithm 1 Algorithm of the Proposed Semisupervised
Graph-Theoretic Method

Input : An archive X = {X1, X2, . . . , XI }, the set of
training images T, the set L = {1, 2, . . . , |L|} of
class labels and a query image Xq

Output: Images from the archive which are similar to Xq

1 begin
2 for i = 1 to I do
3 Segment Xi and compute

fk
i ∀ rk

i ∈ {r1
i , r2

i , . . . , rni
i }

4 Calculate distance between Xi and X j �=i and find
Ni (k nearest neighbors) for Xi

5 end
6 Find the weights and construct the neighborhood

graph G.
7 Find the label score vector L̃t ′ of each Xt ′ ∈ X \ T by

iteratively updating the label matrix Ỹ as
Ỹ = βWỸ + (1 − β)Y until convergence

8 Binarize L̃t ′ using an appropriate threshold th to
obtain Lt ′ .

9 For Xq , find Lq and form a set Xsub of images
satisfying Lq · Li ≥ 1

10 for all training images in Xsub do
11 Label each of the remaining unlabeled regions of

Xt with the label of the adjacent and the most
similar labeled region.

12 end
13 Find the characteristic feature vector for each class

label c ∈ L
14 for all unlabeled images in Xsub do
15 Label rk

t ′ = c if fk
t ′ is most similar to the

characteristic feature vector of c
16 end
17 foreach i : Xi ∈ Xsub do
18 Create a vertex-labeled edge-weighted undirected

graph Gi = (Vi , Ei , Ai )
19 Calculate GD(Gq , Gi ) using the SM algorithm
20 end
21 Sort the GD(Gq , Gi ) values in descending order and

obtain Xfinal.
22 end

hence computed as M(us, vt) = e−|A(ru
q ,rvq )

q −A
(rs

i ,rt
i )

i |. By this
definition of the values of M, y∗

us = 1 if the region ru
q

corresponds (has the same label and similar linking edges)
to the region r s

i and y∗
us = 0 otherwise. The SM algorithm

returns the L1 normalized principal eigenvector of M as the
solution y∗. For a detailed description of the SM algorithm,
we refer the reader to [16]. The graph similarity between
Gq and Gi is then computed as GD(Gq , Gi ) = (y∗)T My∗.
The higher the value of GD(Gq , Gi ) is, the higher is the
similarity between Xq and Xi . Hence, the graph similarity
values are arranged in descending order and the most similar
images to Xq are retrieved in that order, which form the set
Xfinal of retrieved images. The full algorithm of the proposed
method is described in Algorithm 1.
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TABLE I

MULTILABELS ASSOCIATED WITH THE IMAGES OF EACH CATEGORY IN THE ARCHIVE

III. DATA SET DESCRIPTION AND EXPERIMENTAL SETUP

A. Dataset Description

In order to evaluate the performance of the proposed
semisupervised method, we have conducted experiments on
the UCMERCED archive of 2100 images, each of size
256 × 256 pixels, taken from aerial orthoimagery and broadly
grouped into 21 different categories. Further information about
the archive can be obtained in [2]. Since the proposed method
is based on multilabel retrieval, we have relabeled the images
in the archive. Each image in the archive has been manually
labeled with one or more (maximum seven) labels based on
visual inspection in order to create the ground truth data
(the multilabels are available at http://bigearth.eu/datasets).
The total number of distinct class labels associated with X
for the considered archive is |L| = 17. A few images are
then randomly chosen from the labeled data to form the
set T of training images and the labels of the remaining
images are considered only while evaluating the retrieval
performance. The retrieval is done on the basis of the choice
of labels by the user. Fig. 6 shows an example image from
each category and the multilabels associated with them after
relabeling the archive. Table I lists the class labels associated
with the images for each of the broad categories in the archive.
The category names are given based on our understanding
of the categories with respect to the primitive classes present
in their images. The original category names (if any) in the
archive are given in brackets. We would like to point out
that each image belonging to a broad category (in the first
column of Table I) does not need to be associated with
all the class labels in the corresponding row (in the sec-
ond column of Table I) and may be associated only with
some of them. The number of images present in the archive

TABLE II

NUMBER OF IMAGES PRESENT IN THE ARCHIVE FOR EACH CLASS LABEL

associated with each of the newly defined class labels is listed
in Table II.

B. Experimental Settings

In our experiments, the regularization parameter for the
segmentation algorithm is experimentally chosen to be 0.75.
After segmentation, the number of regions ni in each Xi lies
in the range between 2 and 50. Each region is described
by the following features concatenated together to form
a 232-D feature vector: 1) shape features [24] (which include
Fourier descriptors and contour-based shape descriptors);
2) intensity features (which consist of the mean, standard
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Fig. 6. Example of an image from each category in the considered archive
and its associated class labels. (a) Airplane, bare soil, grass, and cars. (b) Sand
and sea. (c) Water, trees, and bare soil. (d) Trees and bare soil. (e) Pavement,
cars, and grass. (f) Ship, dock, and water. (g) Pavement, cars, bare soil, and
trees. (h) Pavement, grass. (i) sand, and chaparral. (j) Bare soil, grass, trees.
(k) court, grass, and trees. (l) Cars and pavement. (m) Buildings, pavement,
and cars. (n) Field and trees. (o) Mobile home, pavement, and trees.
(p) Pavement, cars, and buildings. (q) Buildings, bare soil, and pavement.
(r) Tanks and pavement. (s) Bare soil, grass, and buildings. (t) Buildings,
pavement, and cars. (u) Buildings, pavement, and trees.

deviation, and skewness of the samples within each region in
each spectral channel); and 3) texture features (which include
entropy and spectral histogram [25]). Further details about the
features can be found in [6]. Image similarity for neighborhood
graph construction in the proposed method has been measured
using the earth mover’s distance (EMD) [26], due to its
ability to handle variable-length image representations and its
robustness to inaccurate image segmentation. The weight for a
feature vector fk

i is taken to be the normalized area (in terms
of number of pixels) in the corresponding region rk

i of Xi .
To evaluate the efficiency of EMD in finding neighboring
images, we have compared the results obtained by EMD
with those obtained by four state-of-the-art image descriptors,
i.e., Gist [27], SIFT, LBP, and LPQ descriptors, each used with
the chi-square distance. While the above-mentioned methods
resulted in an average precision of less than 55% in finding
correct image neighbors (according to the broad category
labels associated with the images), EMD resulted in a pre-
cision of more than 70%. Although EMD is costly in terms of
computational complexity compared with the other methods,
achieving high accuracy with the multilabel categorization
algorithm is of foremost importance for obtaining satisfactory
performance of the proposed retrieval system. These reasons
justify the choice of EMD for finding image neighborhoods
as opposed to other state-of-the-art methods. The value of
β in (2) is set to 0.99 as suggested in [28]. After the
filtering of irrelevant images in the first step, the set Xsub

contains an average of 900 images. In the region labeling
step, we have labeled an average of five regions in each
training image, which constitute only 10% of the regions
in the image. To compute the distance d(·, ·) between the
feature vectors of two regions for labeling, we have used
different distance measures to evaluate similarities between
node attributes: City block distance is considered for Fourier
descriptors and intensity features, whereas Euclidean distance
is considered for entropy and contour-based shape features and
Chi-square distance is selected for spectral histograms. The
weights α1 and α2 in (3) are empirically set to 0.8 and 0.2,
respectively, in order to give more importance to the character-
istics of the regions linked by an edge in determining the edge
weight rather than to the geometric properties of the regions.

In order to evaluate the performance of the proposed mul-
tilabel image retrieval method, we have considered four state-
of-the-art methods for comparison: 1) the k-NN algorithm
applied to the image descriptors obtained by the LPQ [4]
(denoted as KNN); 2) the attributed relational graph modeling
and matching method proposed in [6] (denoted as ARGMM);
3) the multilabel SVM method [9] (denoted as ML-SVM),
which consists of a parallel architecture made up of 17 one-
versus-all SVMs (one for each primitive class) to assign
multilabels to the query image and uses LPQ image descriptors
to model the images; and 4) the multiclass SVM method [10]
(denoted as MC-SVM), in which we train a one versus all
SVM classifier for each primitive class to classify each region
in an image using our region descriptors. The first two methods
are unsupervised, whereas the latter two are supervised. It is
worth noting that there are no multilabel image retrieval
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methods available in RS CBIR literature that can be used
for comparison. To obtain the LPQ descriptors for an image,
we have considered a 3 × 3 neighborhood for each sample,
computed a binary code for each pixel position as described
in [4], and finally formed an L1 normalized histogram of the
codes to form a 256-D descriptor for each image. The k-
NN algorithm is then applied using the G statistic similarity
measure for image similarity computation [4]. For ARGMM,
we have initially segmented and constructed an attributed
relational graph for each image in the archive by extracting
some features from the regions. Images similar to the query
image are then determined by matching the graph of the
query image with all the graphs in the archive using an
inexact graph matching strategy. Then the images are ranked
in the order of graph similarity values. Further details about
the method can be obtained in [6]. ML-SVM and MC-SVM
were implemented using a radial basis function kernel and
the kernel parameters have been chosen via five-fold cross
validation. For the ML-SVM, each of the 17 trained SVM
classifiers independently predicts a vector. The vectors are
then summed up to get the final label vector Lq of the query
image, given the 256-D LPQ descriptor of the query image
as input. The number of training instances is 315, since we
have chosen 15 training images from each of the 21 broad
categories. The choice of 15 images is justified in Section IV.
For the MC-SVM method, the trained classifiers predict the
label of a region, given the 232-D feature vector of the region.
Since we concatenate feature vectors of various lengths into
a single feature vector, we normalize the features according
to [29]. The number of training regions in this method is
10 108. Each region in the query image is classified into one
of the 17 primitive classes by the trained classifiers, and the
label vector Lq of the query image is obtained from the
classes present in it. The similarity between two images is
finally computed using the Hamming distance between their
corresponding label vectors for both the methods.

Since we have considered multilabels for each image in
the archive, conventional single-label-based retrieval perfor-
mance evaluation metrics are not suitable for our multilabel
retrieval system. Hence, in our experiments with the multilabel
information, results of each method are provided in terms of
three special performance evaluation metrics [30]: 1) accuracy;
2) precision; and 3) recall. In order to define these metrics, let
Lr ⊂ L be the set of class labels present in the retrieved image
Xr ∈ Xfinal. Similarly, let Lq ⊂ L be the set of class labels
present in Xq . Accuracy is the ratio between the number of
identical labels of Xq and Xr and the total number of unique
labels of Xq and Xr . While precision is defined as the fraction
of identical labels of Xq and Xr in the label set Lr , recall
is defined as the fraction of identical labels of Xq and Xr

in the label set Lq . The equations defining these metrics are
given in Table III. According to their definitions, the retrieval
performance is increased when the accuracy, precision, and
recall values approach to one.

IV. EXPERIMENTAL RESULTS

A. Effects of Varying the Values of K and |T|
In order to study the effects of varying the values of

K (number of neighbors of each image in the neighbor-

TABLE III

PERFORMANCE METRICS USED TO EVALUATE THE PERFORMANCE OF THE
PROPOSED METHOD. FOR TWO SETS, ∩ DENOTES INTERSECTION

AND ∪ DENOTES UNION OF THE SETS

hood graph G) and |T| (number of training images) on the
performance metrics, we have used two measures, namely,
false positives (FPs) and true positives (TPs), which have
direct effect on the performance metrics. On the one hand,
the number of FPs for a particular class label c ∈ L is the
number of images in the archive that are wrongly labeled c,
expressed as a percentage of images in the archive that do not
have the label c. On the other hand, the number of TPs for
a label c is defined as the number of images in the archive
that are correctly labeled, expressed as a percentage of the
total number of images in the archive having the label c.
Both these values are calculated by taking the average over
all the class labels c ∈ L. Hence, the number of FP should
ideally be very low and the number of TP should be very high.
Fig. 7 shows the variation in the values of TP and FP versus
variations of the values of the two parameters K and |T|. From
Fig. 7(a), one can observe that the number of TP decreases
and the number of FP increases by increasing the value of K .
This is because, as we consider a higher number of neighbors
for an image, the chances of getting comparatively irrelevant
images in the neighborhood increase, thereby degrading the
system performance. On the other hand, Fig. 7(b) shows that
the number of TP increases and the number of FP decreases by
increasing the value of |T|. The reason is that as we train the
system on a higher number of training images, the labeling
of the unlabeled images becomes more accurate. However,
the performances for |T| = 15 and |T| = 20 have been found
to be quite similar. Considering these results, the values of
K = 5 and |T| = 15 have been found to give the best result
in terms of accuracy of the multilabel categorization algorithm
and are hence used in our experiments. It is important to note
that the considered archive contains both large intra-category
and inter-category variations in terms of region features, and
hence |T| = 15 is a reasonable choice. A real archive is
probably more complex than ours.

B. Comparison of the Overall Retrieval Performance
With State-of-the-Art Methods

Table IV shows the values of accuracy, precision, and
recall obtained when the KNN, the ARGMM, the ML-SVM,
the MC-SVM, and the proposed MLIRM are used. These
values are the average of the values obtained by considering
each image in the archive as the query image and by retrieving
the 20 most similar images. By analyzing Table IV, one
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Fig. 7. Results of the TP and FP values obtained by the proposed method
by varying (a) K and (b) |T|.

TABLE IV

RESULTS OBTAINED FOR THE KNN, THE ARGMM, THE ML-SVM,
THE MC-SVM, AND THE PROPOSED MLIRM

can observe that the proposed MLIRM obtained significantly
better metric values in the considered archive compared with
the KNN, the ARGMM, and the ML-SVM. As an example,
the proposed method shows an improvement of 18.42% in
accuracy and of 19.24% in precision over the ARGMM.
The improvement over the KNN is even more remarkable
and is of 42.44% in accuracy and of 34.03% in precision.
The improvement in the recall value is of 11.6% over the
ML-SVM and of 1.7% over the MC-SVM. These results are
because of the ability of the proposed MLIRM to accurately
model the image regions using the inherent multilabel infor-
mation present in them. It is worth noting that the proposed
method and the MC-SVM exploit the same region features, but
the proposed method is more effective in terms of both compu-
tational time and retrieval accuracy. Further details regarding
the computational efficiency are given in Section IV-E.

Fig. 8 shows an example of images retrieved by the
ARGMM, the MC-SVM, and the proposed MLIRM when
the query image is selected from the golf course category of
the original archive. The retrieval order of each image is given
above the related image and the multilabels associated with

TABLE V

VALUES OF THE PERFORMANCE METRICS OBTAINED BY EXECUTING
THE MLIRM WITH AND WITHOUT THE SECOND STEP

(MULTILABEL CATEGORIZATION)

Fig. 8. Golf course image retrieval. (a) Query image. (b) Images retrieved
by the ARGMM. (c) Images retrieved by the MC-SVM. (d) Images retrieved
by the proposed MLIRM (multilabels of each image are reported below the
related image).

the image are given below the related image. We would like
to mention that the ARGMM and the MC-SVM are the best
among the unsupervised and supervised methods, respectively,
and hence the retrieval results of the other two methods are
not given.

The query image considered in Fig. 8(a) belongs to the golf
course category and is associated with three primitive classes,
namely, grass, trees, and bare soil. From the results, one can
see that all the images retrieved by the proposed MLIRM
[see Fig. 8(d)] contain all the three primitive classes. On the
contrary, the images retrieved by the ARGMM [see Fig. 8(b)]
mostly contain one or two of the primitive classes only. For
example, the fifth image retrieved by the ARGMM originally
belongs to the agricultural category of the UCMERCED
archive. The results show how the label matching strategy
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Fig. 9. Medium residential image retrieval. (a) Query image. (b) Images
retrieved by the ARGMM. (c) Images retrieved by the MC-SVM. (d) Images
retrieved by the proposed MLIRM (multilabels of each image are reported
below the related image).

solves the problem of spurious retrieval results due to feature
matching. For the MC-SVM, the primitive classes present in
the retrieved images [see Fig. 8(c)] are more or less the same
as those present in the query image, but MC-SVM does not
take into account the spatial arrangement of the regions in
the images, which is evident from the retrieval results. Fig. 9
depicts another example of images retrieved by the ARGMM,
the MC-SVM, and the MLIRM related to a query image taken
from the medium residential category. The retrieval results
show that it is necessary to consider labels as well as the
spatial arrangement of the regions in the query image in
order to retrieve visually more similar images. By a visual
analysis of all the obtained results, we can conclude that
the proposed method accurately detects the multiple primitive
classes associated with each query image and retrieves the
visually most similar images from the archive.

C. Analysis of the Effectiveness of the Steps of
the Proposed Method

1) Retrieval Performance When Only the First and Second
Steps Are Executed: The multilabel image categorization step

Fig. 10. Top three images retrieved by the MLIRM for a query image from
the beach category. (a) Query image. (b) Images retrieved if only the first
and second steps are performed. (c) Images retrieved if all the four steps are
performed.

of the proposed MLIRM aims to associate multiple class labels
to each image in the archive based on the information obtained
from the training images. After the second step, the query
image Xq is also associated with multilabels in the same way.
It is to be noted that relevant images could be searched in X by
merely matching the class labels of Xq with those of Xi ∈ X.
The system would then retrieve the images having the same
class labels as that of Xq . However, in this case, the system
would not be able to rank the retrieved images in the order
of their similarity with Xq . Fig. 10 shows an example of
the top three retrieved images for a query image from the
beach category, both by performing only the first two steps
and by performing all the four steps. It can be observed that
Xq and all the retrieved images in Fig. 10(b) and (c) contain
the two class labels—sand and sea. Hence, the values of the
performance metrics used to evaluate the performance of the
MLIRM are not affected much. However, in terms of visual
similarity, the retrieved images in Fig. 10(c) are more similar
to Xq in Fig. 10(a) than the retrieved images in Fig. 10(b).
In the case when only the first and second steps are performed,
the system detects the primitive classes sand and sea in Xq

and accordingly retrieves all images in X containing the labels
of sand and sea. But since the second step has no provision of
ordering the images based on their similarity to Xq , the images
are retrieved in a random order. On the other hand, the steps of
region labeling and graph matching in MLIRM compute the
similarity of Xi ∈ Xsub with Xq and retrieve the images in the
order of similarity values. Thus, it is necessary to perform all
the four steps of MLIRM for achieving satisfactory retrieval
performance.

2) Retrieval Performance When Only the First, Third,
and Fourth Steps Are Executed: In the proposed method,
the retrieval system initially detects the class labels present
in the given query image and filters out the irrelevant images
from the search space before proceeding to the region labeling
and graph matching steps. This strategy reduces the compu-
tational time considerably, since it is no longer required to
construct graphs and perform matching for all the images
in the archive. If the multilabel categorization step is not
executed, the system performs region labeling for all the
images Xi ∈ X instead of Xi ∈ Xsub as proposed in the
MLIRM. For labeling the regions of unlabeled images in
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Fig. 11. Google map image retrieval. (a) Query image. (b) Top 10 images
retrieved by the proposed MLIRM (multilabels of each image are reported
below the related image).

that case, the system will compute d(·, ·) between the feature
vector of a region and each of the characteristic feature vectors
of all the class labels c ∈ L. This may result in a region
being wrongly labeled as a class that is not present in the
image. In the proposed MLIRM, the multiple primitive classes
associated with the images in the first step prevent this kind
of wrong labeling, since each region is assigned to only
one of those primitive classes that are present in the image.
Hence, avoiding the second step will not only increase the
computational time but also reduce the retrieval accuracy.
Table V lists the values of the performance metrics obtained
by performing the experiment with and without the multilabel
categorization step. These values are the average of the values
obtained by considering each image in the archive as the query
image and by retrieving the 20 most similar images. As it is
evident from the results, the retrieval performance deteriorates
if multilabel categorization is not performed.
D. Retrieval Results for a Query Image From
Outside the Archive

We have also analyzed the efficiency of the MLIRM by
giving as input to the system a query image that: 1) does not
belong to the considered archive; 2) has a size different from
those in the archive; and 3) is acquired by a different sensor
having the same spectral characteristics of the archive images.
For this experiment, we selected a patch from Google Earth
[see Fig. 11(a)] as the query image such that the consid-
ered patch has a different size with respect to those of the
archive images. We observed that the results obtained by the
proposed retrieval system extract from the archive the images
that are very similar to query image [see Fig. 11(b)].

From Fig. 11(b), one can observe that each of the retrieved
images contains all or a subset of the primitive classes present
in the query image in Fig. 11(a). The retrieved images are
also ranked in the order of similarity between the images as
determined by the subgraph matching algorithm. These results
show that the proposed method works well as long as the
spatial resolution and the spectral characteristics of the sensors
used to acquire the images remain similar.

E. Analysis of the Computational Efficiency

The computational efficiency of the proposed MLIRM,
the MC-SVM, the ML-SVM, the ARGMM, and the KNN can
be analyzed by considering the computational time required
for each step of the methods. All the experiments are imple-
mented via MATLAB on a standard PC with Intel Core
2.93-GHz i7 processor and 8-GB RAM. In our experiments,
the MLIRM takes an average of 10 s to segment one image
and about 7 s to extract features from the obtained regions.
The average time required for the multilabel categorization
step (step 2) is about 13 s (which is made up of 5.21 s
required for neighborhood graph construction, 7.82 s for
label propagation, and 0.07 s for label score binarization).
The computational time for these two steps depends on the size
of the image archive, the size of the images, and the number
of training images used. It is worth noting that although
segmentation and multilabel categorization of the images take
considerable amount of time, they are performed offline prior
to querying the retrieval system. The region labeling step
(step 3) requires an average of 1.49 s for one image. Finally,
an average of 7.78 s is taken to match the query graph with
the graphs of all Xi ∈ Xsub in step 4. The computational
time for the fourth step depends on the size of the graphs and
the size of the search space. The computational times taken
by the KNN, the ARGMM, the ML-SVM, the MC-SVM,
and the MLIRM are given in Table VI. The time reported
in Table VI for the first step of the KNN consists of extracting
LPQ features from one image and that of the second step is
due to the matching of the feature vector of Xq with the feature
vectors of all Xi ∈ X. For the ARGMM, the computational
time for step 1 accounts for the time required to model an
image as an attributed relational graph. The computational
time for step 2 is due to the time required to match Gq

with all Gi in the archive. For both ML-SVM and MC-SVM,
the first step includes the training of the independent SVM
classifiers along with the cross validation and the second
step includes the prediction of the label vector of the query
image and the retrieval of the similar images. Both these
methods require comparatively larger amount of time because
of training 17 classifiers. Note that the total time mentioned for
each method in Table VI is merely the sum of the time required
by the individual steps of the related method. The results show
that in spite of the requirement to train the retrieval system,
the proposed MLIRM is faster than the ARGMM. This is
mainly due to the reduction of search space after the second
step in our proposed method. We would like to point out that
although the KNN is the fastest of these five methods, it has
the poorest retrieval performance compared with the other two
(see Table IV).
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TABLE VI

COMPARISON OF THE COMPUTATIONAL TIME (IN SECONDS) REQUIRED BY THE KNN, THE ARGMM,
THE ML-SVM, THE MC-SVM, AND THE PROPOSED MLIRM

TABLE VII

TABLE OF SYMBOLS

V. CONCLUSION

In this paper, we have introduced a semisupervised graph-
theoretic method in the framework of multilabel remote sens-
ing image retrieval, which requires only a small number of
training images characterized by multilabels (associated to
different land-cover classes). The proposed method consists
of four main steps. The first step includes image segmentation
and feature extraction from the segmented regions. The second
step exploits the underlying label correlations of different land-
cover classes and uses a semisupervised graph-based algorithm
to associate each image in the archive with multilabels by
propagating the label information from the training images to
the unlabeled images. In the third step, few region labels of
the training images are used to associate each region of the
training images (and subsequently of the unlabeled images)
with a particular class label. In the fourth step, these labels
are used to create a RAG for each image, which are then used
in the graph matching algorithm to compute image similarity.

In order to evaluate the proposed method, we redefined
a benchmark archive in RS CBIR problems by associating
each image with a set of labels (instead of only a single
label). Experimental results on this multilabeled image archive
demonstrate that our proposed method leads to significant
performance improvement over the RS CBIR methods used
in the comparisons. The main reasons for the efficiency of the
proposed method are as follows.

1) The second step exploits the information inherently
present in RS images due to both the detailed level of
semantic content associated to land-cover classes and

their correlation at semantic level, which significantly
improves the retrieval accuracy.

2) The strategy of prefiltering before the third step and
then performing finer search in a smaller search space
considerably reduces the computational time required for
the method.

3) The final step of matching labeled graphs allows one
to avoid spurious region matching based on features as
was done in our previous unsupervised method. As a
result, the images retrieved by the proposed method are
found to be much more similar to the query image com-
pared with the images retrieved by the state-of-the-art
CBIR methods.

We would like to point out that while we have used RGB
aerial orthoimagery images in our experimental analysis,
the proposed method can be used with any kinds of remote
sensing images (e.g., multispectral and hyperspectral images)
by performing feature extraction for each spectral channel.
The main drawback of the proposed method is that its accu-
racy is sensitive to the choice of the segmentation algorithm
and the region features. Thus, these steps should be defined
carefully by taking into account the properties of the images
in the considered archive. Moreover, we also plan to apply
fast scalable parallel algorithms in the context of multilabel
categorization and subgraph matching in order to reduce the
computational complexity.

As a final remark, we would like to point out that our
method cannot identify a class in an image during multilabel
categorization if it is not associated with any of the training
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images considered by the system. In our experiments, we have
ensured that the system is trained on a sufficient number of
training images for each possible class label by manually label-
ing the images in the archive. However, in case of partially
labeled archive, it is critical to detect whether a few class labels
are missing from the training set. In order to overcome this,
as a future development of this paper, we plan to perform an
active learning method through relevance feedback [8], where
a classifier is trained on the currently labeled images and
the images that are not confidently classified are returned as
images to be labeled, thereby updating the label set associated
with the archive.

APPENDIX

See Table VII.
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