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Fully connected layer

End-to-End Network
with real-time performance on mobile devices
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Face Detection Facial Retargeting

Multi Face Network (MFN)
B N J— - Bbox

Contributions

A novel top-down approach to jointly learn
o bounding box locations
o 3D Morphable Model (3DMM) parameters
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Multi-scale representation learning to
disentangle the 3DMM parameters
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* An end-to-end real-time memory-efficient
system for practical applications with multi-
face Images (26 fps on Google Pixel 2)
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Multi-scale Representation
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Advantages of multi- Performance on single Advantages of joint Time complexity
scale design (ablation) face videos training for face detection analysis
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Multi Face Retargeting (Iivemberformance capture using webcam and CPU)
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» Disentangling of 3DMM parameters Is
iImportant for retargeting purpose

Pose (R, t, f), identity (w,;) and expression

8

Normalized Mean Error (NME)
o
Area Under the Curve (AUC)
Average Precision (AP)
w

20 -
Single scale MFN Single scale MFN  Multi-scale MFN

.8
. i-scale .
(W ) param eters are Iearnt frOm gIObal Single scale SFN  Multi-scale SFN  Multi-scale SFN MTCNN 6] MHM[7]  Multi-scale SFN detection)  [4] Net[S] ~ MFN * Constant runtime (4) Ranjan et al.,"Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition”, TPAMI, 2017
exp y

el ower 2D |and mark error ° H|gher a"gnment accuracy ° |mproved face de’[ection e Faster compared to (5) Yang et al.,"From Facial Parts Responses to Face Detection: A Deep Learning Approach", ICCV, 2015
. 6) Zh t al.,"Joint f detecti d ali t usi ltitask ded luti | networks", IEEE Si | P ing Letters, 2016
. Better ground truth fOr MEN than State-Of-the-art due to 3DMM constraints Separate networks (6) Zhang et al.,"Joint face detection and alignment using multitask cascaded convolutional networks ignal Processing Letters

(7) Deng et al.,"Joint multi-view face alignment in the wild", arXiv, 2017

regional and local features respectively




