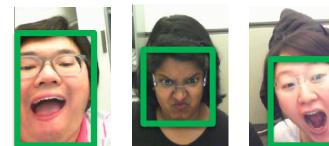
PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING Microsoft

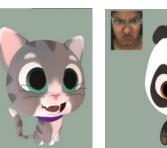
Joint Face Detection and Facial Motion Retargeting for Multiple Faces

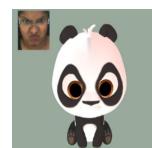
Bindita Chaudhuri¹, Noranart Vesdapunt², Baoyuan Wang² ¹University of Washington, ²Microsoft Corporation


LONG BEACH **CALIFORNIA** June 16-20, 2019

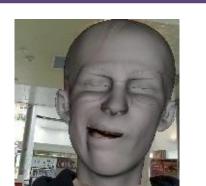
Objective

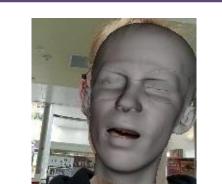



End-to-End Network


with real-time performance on mobile devices


Face Detection




Facial Retargeting

Contributions

- A novel top-down approach to jointly learn bounding box locations
- 3D Morphable Model (3DMM) parameters
- Multi-scale representation learning to disentangle the 3DMM parameters
- An end-to-end real-time memory-efficient system for practical applications with multiface images (26 fps on Google Pixel 2)

Multi-scale Representation

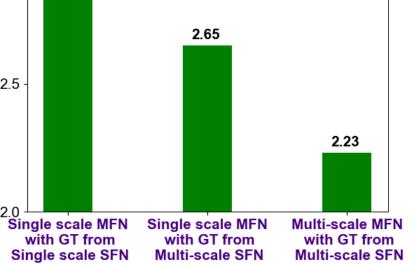
Correct fitting Incorrect fitting Same 2D landmarks

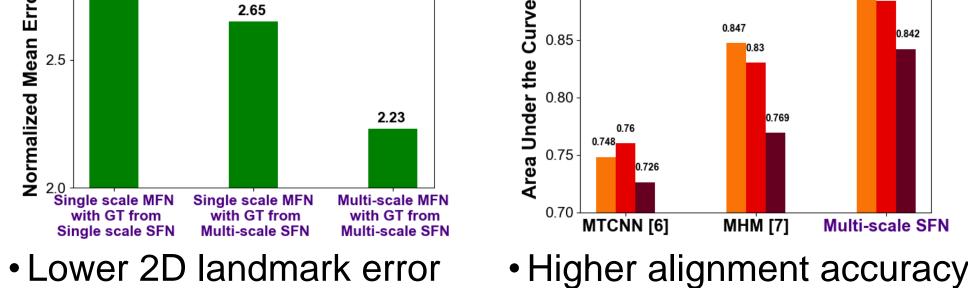
- Disentangling of 3DMM parameters is important for retargeting purpose
- Pose (**R**, **t**, f), identity (w_{id}) and expression (w_{exp}) parameters are learnt from global, regional and local features respectively

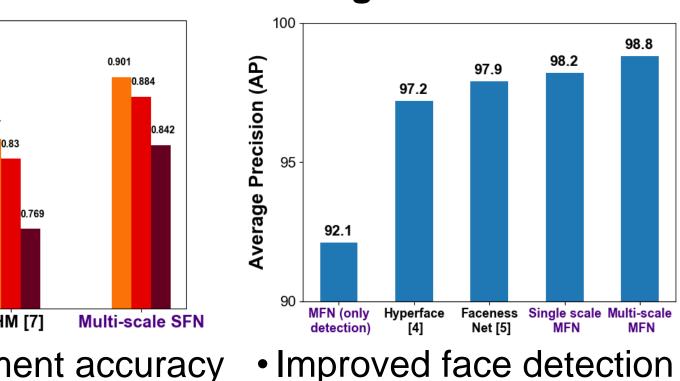
Methodology TRAINING Single Face Network (SFN) **3DMM**: $\mathcal{M} = \mathcal{V} \times b_{id} \times b_{exp}$ Projected 68 2D facial landmarks: $\mathbf{P_{lm}} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \end{bmatrix} [\mathbf{R} * (\mathcal{M} * w_{id} * w_{exp}) + \mathbf{t}]$ Conv + BatchNorm + ReLU Fire module[1] + Squeeze-Excite module[2] + Maxpooling Fire module^[1] (stride 2) Fully connected layer training data Channel-wise concatenation Multi Face Network (MFN) TESTING 3D characters

Quantitative Evaluation

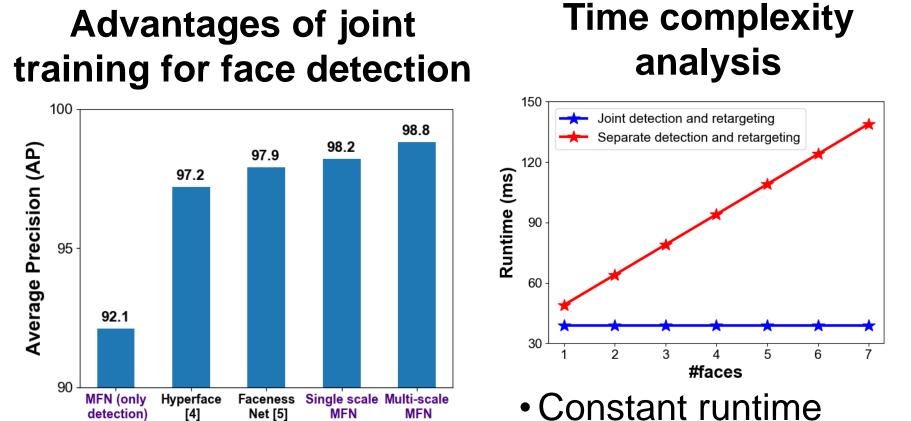
Performance on single


face videos


than state-of-the-art


scale design (ablation)

Better ground truth for MFN


Advantages of multi-

Advantages of joint

Faster compared to due to 3DMM constraints separate networks

Qualitative Results

Single Face Retargeting (custom test set)

Multi Face Retargeting (network outputs for AFW and WIDER test set)

Multi Face Retargeting (live performance capture using webcam and CPU)

REFERENCES: (1) landola et al., "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size", arXiv, 2016

- (2) Hu et al., "Squeeze-and-Excitation Networks", CVPR, 2018
- (3) Joseph Redmon and Ali Farhadi, "YOLO9000: Better, Faster, Stronger", CVPR, 2017
- (4) Ranjan et al., "Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition", TPAMI, 2017 (5) Yang et al., "From Facial Parts Responses to Face Detection: A Deep Learning Approach", ICCV, 2015
- (6) Zhang et al., "Joint face detection and alignment using multitask cascaded convolutional networks", IEEE Signal Processing Letters, 2016
- (7) Deng et al., "Joint multi-view face alignment in the wild", arXiv, 2017